Suresh Thennadil

    Registered to supervise postgraduate research


    Personal profile

    Research interests

    Measurements and Analytics for Petroleum and Chemical Industries

    Oil and gas and other chemical process industries are constantly under pressure to minimise costs and environmental footprint. To achieve these objectives effective control and optimisation of the processes are required. Two key enabling technologies are needed to achieve effective control and optimisation. One is online measurement systems that provide continuous information on key physical and chemical attributes of the process streams. The second enabling technology is for the extraction of critical information from process measurements through the application of big data analytics and process modelling. These technologies are essential to develop reliable predictive models that effectively utilise the large amount of data that are typically collected in petroleum and chemical plants. Combining this databased approach with first-principles-based knowledge of process systems can potentially provide significantly improved predictive models.

    The technologies we are developing have broad applications across the chemical and agricultural sectors.  We welcome enquiries from prospective industry and academic collaborators as well as from researchers interested in pursuing a Ph.D. within the following project areas.


    Data Driven Process Analysis – Big Data Analytics

    In many areas of engineering, the commercial availability of variety sensors based on different measurement techniques has increased due to them becoming progressively cheap and thus affordable. This has led to the collection of vast amounts of data. Most of these data are of disparate types. For example, in a chemical process data collected consists of a large number of qualitative and quantitative measurements taken at different time intervals. 


    We are investigating cutting edge machine learning techniques for building process models to provide information on the current status of the process in terms of critical product attributes and also to predict the end point conditions so that timely corrective actions can be taken. The handling of disparate data types is also an active area of investigation in our group. We are investigating approaches based on Bayesian principles for combining data from different sources. The goal is to develop data and model fusion techniques that can be applied to upstream and downstream oil and gas processes.


    Online monitoring of critical attributes of a process stream

    We are engaged in the development of a measurement platform that can measure multiple chemical and physical properties of a process stream. Optical spectroscopy has been our main focus. We are developing a novel fibre-optic probe system that utilises Ultraviolet-Visible-Near Infrared spectroscopy. We are investigating a number of measurement configurations based on spatially and angularly resolved measurements that will enable the simultaneous determination of particle/droplet size and composition of process streams that are slurries or emulsions. The challenge of extracting the required information from these measurements is being investigated through a combination of machine learning techniques and fundamental light propagation models.

    Fingerprint Fingerprint is based on mining the text of the person's scientific documents to create an index of weighted terms, which defines the key subjects of each individual researcher.

    Particle size Chemical Compounds
    Suspensions Chemical Compounds
    Radiative transfer Chemical Compounds
    Infrared radiation Chemical Compounds
    optical properties Physics & Astronomy
    Optical properties Chemical Compounds
    Calibration Engineering & Materials Science
    Reflectometers Chemical Compounds

    Network Recent external collaboration on country level. Dive into details by clicking on the dots.

    Research Output 2011 2018

    • 9 Article
    • 3 Conference Paper published in Proceedings

    Automated weighted outlier detection technique for multivariate data

    Thennadil, S. N., Dewar, M., Herdsman, C., Nordon, A. & Becker, E. Jan 2018 In : Control Engineering Practice. 70, p. 40-49 10 p.

    Research output: Contribution to journalArticle

    Outlier Detection
    Multivariate Data
    Multivariate Outliers
    Mahalanobis Distance
    Process Monitoring

    A Comparative Investigation of the Combined Effects of Pre-Processing, Wavelength Selection, and Regression Methods on Near-Infrared Calibration Model Performance

    Wan, J., Chen, Y-C., Morris, A. J. & Thennadil, S. 1 Jul 2017 In : Applied Spectroscopy. 71, 7, p. 1432-1446 15 p.

    Research output: Contribution to journalArticle

    Open Access
    regression analysis
    Infrared radiation

    Alternative measurement configurations for extracting bulk optical properties using an integrating sphere setup

    Thennadil, S. N. & Chen, Y-C. 1 Feb 2017 In : Applied Spectroscopy. 71, 2, p. 224-237 14 p.

    Research output: Contribution to journalArticle

    Open Access
    Optical properties
    optical properties

    Spatially and angularly resolved spectroscopy for in-situ estimation of concentration and particle size in colloidal suspensions

    Chen, Y. C., Foo, D., Dehanov, N. & Thennadil, S. N. Dec 2017 In : Analytical and Bioanalytical Chemistry. 409, 30, p. 1-14 14 p.

    Research output: Contribution to journalArticle

    Particle Size
    Spectrum Analysis
    Particle size

    Monitoring of Mean Particle Size during Emulsion Polymerisation Reactions using Visible and Near Infrared Diffuse Reflectance Spectroscopy

    Dehanov, N. & Thennadil, S. 2015 Asia Pacific confederation of Chemical Engineering Congress 2015 (APCChe 2015) incorporating CHEMECA 2015. Melbourne: Engineers Australia, p. 444-449 6 p.

    Research output: Chapter in Book/Report/Conference proceedingConference Paper published in Proceedings

    Emulsion polymerization
    Particle size
    Infrared radiation