Abstract
As one of the most successful industrial realizations of Internet of Things, a smart grid is a smart IoT system that deploys widespread smart meters to capture fine-grained data on residential power usage. Unfortunately, it always suffers diverse privacy attacks, which seriously increases the risk of violating the privacy of customers. Although some solutions have been proposed to address this privacy issue, most of them mainly rely on a trusted party and focus on the sanitization of metering masurements. Moreover, these solutions are vulnerable to advanced attacks. In this paper, we propose a decentralized mechanism for privacy-preserving computation in smart grid called DDP, which leaverages the differential privacy and extends the data sanitization from the value domain to the time domain. Specifically, we inject Laplace noise to the measurements at the end of each customer in a distributed manner, and then use a random permutation algorithm to shuffle the power measurement sequence, thereby enforcing differential privacy after aggregation and preventing the sensitive power usage mode informaton of the customers from being inferred by other parties. Extensive experiments demonstrate that DDP shows an outstanding performance in terms of privacy from the non-intrusive load monitoring (NILM) attacks and utility by using two different error analysis.
Original language | English |
---|---|
Pages (from-to) | 2915-2926 |
Number of pages | 12 |
Journal | IEEE Transactions on Computers |
Volume | 71 |
Issue number | 11 |
Early online date | Nov 2021 |
DOIs | |
Publication status | Published - 1 Nov 2022 |
Bibliographical note
Funding Information:This work was supported in part by the National Natural Science Foundation of China under Grants 42001392, 61861042, and 41571426.
Publisher Copyright:
© 1968-2012 IEEE.