A Generic Cryptographic Deep-Learning Inference Platform for Remote Sensing Scenes

Qian Chen, Yulin Wu, Xuan Wang, Zoe L. Jiang, Weizhe Zhang, Yang Liu, Mamoun Alazab

    Research output: Contribution to journalArticlepeer-review

    4 Citations (Scopus)
    211 Downloads (Pure)

    Abstract

    Deep learning plays an essential role in multidisciplinary research of remote sensing. We will encounter security problems during the data acquisition, processing, and result generation stages. Therefore, secure deep-learning inference services are one of the most important links. Some theoretical progress has been made in cryptographic deep-learning inference, but it lacks a general platform that can be realized in reality. Constantly modifying the corresponding models to approximate the plaintext results reveal the model information to a certain extent. This article proposes a generic post-quantum platform named the PyHENet, which perfectly combines cryptography with plaintext deep learning libraries. Second, we optimize the convolution, activation, and pooling functions and complete the ciphertext operation under floating point numbers for the first time. Moreover, the computation process is accelerated by single instruction multiple data streams and GPU parallel computing. The experimental results show that the PyHENet is closer to the plaintext inference platform than any other cryptographic model and has satisfactory robustness. The optimized PyHENet obtained a better accuracy of 95.05% in the high-resolution NaSC-TG2 database, which the Tiangong-2 space station received.

    Original languageEnglish
    Pages (from-to)3309-3321
    Number of pages13
    JournalIEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
    Volume16
    Early online date2023
    DOIs
    Publication statusPublished - 2023

    Bibliographical note

    Publisher Copyright:
    © 2008-2012 IEEE.

    Fingerprint

    Dive into the research topics of 'A Generic Cryptographic Deep-Learning Inference Platform for Remote Sensing Scenes'. Together they form a unique fingerprint.

    Cite this