TY - JOUR
T1 - An oppositional-Cauchy based GSK evolutionary algorithm with a novel deep ensemble reinforcement learning strategy for COVID-19 diagnosis
AU - Jalali, Seyed Mohammad Jafar
AU - Ahmadian, Milad
AU - Ahmadian, Sajad
AU - Khosravi, Abbas
AU - Alazab, Mamoun
AU - Nahavandi, Saeid
N1 - Publisher Copyright:
© 2021 Elsevier B.V.
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021/11
Y1 - 2021/11
N2 - A novel coronavirus (COVID-19) has globally attracted attention as a severe respiratory condition. The epidemic has been first tracked in Wuhan, China, and has progressively been expanded in the entire world. The growing expansion of COVID-19 around the globe has made X-ray images crucial for accelerated diagnostics. Therefore, an effective computerized system must be established as a matter of urgency, to facilitate health care professionals in recognizing X-ray images from COVID-19 patients. In this work, we design a novel artificial intelligent-based automated X-ray image analysis framework based on an ensemble of deep optimized convolutional neural networks (CNNs) in order to distinguish coronavirus patients from non-patients. By developing a modified version of gaining–sharing knowledge (GSK) optimization algorithm using the Opposition-based learning (OBL) and Cauchy mutation operators, the architectures of the deployed deep CNNs are optimized automatically without performing the general trial and error procedures. After obtaining the optimized CNNs, it is also very critical to identify how to decrease the number of ensemble deep CNN classifiers to ensure the classification effectiveness. To this end, a selective ensemble approach is proposed for COVID-19 X-ray based image classification using a deep Q network that combines reinforcement learning (RL) with the optimized CNNs. This approach increases the model performance in particular and therefore decreases the ensemble size of classifiers. The experimental results show that the proposed deep RL optimized ensemble approach has an excellent performance over two popular X-ray image based COVID-19 datasets. Our proposed advanced algorithm can accurately identify the COVID-19 patients from the normal individuals with a significant accuracy of 0.991441, precision of 0.993568, recall (sensitivity) of 0.981445, F-measure of 0.989666 and AUC of 0.990337 for Kaggle dataset as well as an excellent accuracy of 0.987742, precision of 0.984334, recall (sensitivity) of 0.989123, F-measure of 0.984939 and AUC of 0.988466 for Mendely dataset.
AB - A novel coronavirus (COVID-19) has globally attracted attention as a severe respiratory condition. The epidemic has been first tracked in Wuhan, China, and has progressively been expanded in the entire world. The growing expansion of COVID-19 around the globe has made X-ray images crucial for accelerated diagnostics. Therefore, an effective computerized system must be established as a matter of urgency, to facilitate health care professionals in recognizing X-ray images from COVID-19 patients. In this work, we design a novel artificial intelligent-based automated X-ray image analysis framework based on an ensemble of deep optimized convolutional neural networks (CNNs) in order to distinguish coronavirus patients from non-patients. By developing a modified version of gaining–sharing knowledge (GSK) optimization algorithm using the Opposition-based learning (OBL) and Cauchy mutation operators, the architectures of the deployed deep CNNs are optimized automatically without performing the general trial and error procedures. After obtaining the optimized CNNs, it is also very critical to identify how to decrease the number of ensemble deep CNN classifiers to ensure the classification effectiveness. To this end, a selective ensemble approach is proposed for COVID-19 X-ray based image classification using a deep Q network that combines reinforcement learning (RL) with the optimized CNNs. This approach increases the model performance in particular and therefore decreases the ensemble size of classifiers. The experimental results show that the proposed deep RL optimized ensemble approach has an excellent performance over two popular X-ray image based COVID-19 datasets. Our proposed advanced algorithm can accurately identify the COVID-19 patients from the normal individuals with a significant accuracy of 0.991441, precision of 0.993568, recall (sensitivity) of 0.981445, F-measure of 0.989666 and AUC of 0.990337 for Kaggle dataset as well as an excellent accuracy of 0.987742, precision of 0.984334, recall (sensitivity) of 0.989123, F-measure of 0.984939 and AUC of 0.988466 for Mendely dataset.
KW - COVID-19
KW - Deep convolutional neural network
KW - Deep reinforcement learning
KW - Evolutionary computation
KW - Image classification
KW - Optimization
UR - http://www.scopus.com/inward/record.url?scp=85110001740&partnerID=8YFLogxK
U2 - 10.1016/j.asoc.2021.107675
DO - 10.1016/j.asoc.2021.107675
M3 - Article
C2 - 34305489
AN - SCOPUS:85110001740
SN - 1568-4946
VL - 111
JO - Applied Soft Computing
JF - Applied Soft Computing
M1 - 107675
ER -