Bridge to the future: Important lessons from 20 years of ecosystem observations made by the OzFlux network

Jason Beringer, Caitlin E. Moore, Jamie Cleverly, David I. Campbell, Helen Cleugh, Martin G. De Kauwe, Miko U.F. Kirschbaum, Anne Griebel, Sam Grover, Alfredo Huete, Lindsay B. Hutley, Johannes Laubach, Tom Van Niel, Stefan K. Arndt, Alison C. Bennett, Lucas A. Cernusak, Derek Eamus, Cacilia M. Ewenz, Jordan P. Goodrich, Mingkai JiangNina Hinko-Najera, Peter Isaac, Sanaa Hobeichi, Jürgen Knauer, Georgia R. Koerber, Michael Liddell, Xuanlong Ma, Craig Macfarlane, Ian D. McHugh, Belinda E. Medlyn, Wayne S. Meyer, Alexander J. Norton, Jyoteshna Owens, Andy Pitman, Elise Pendall, Suzanne M. Prober, Ram L. Ray, Natalia Restrepo-Coupe, Sami W. Rifai, David Rowlings, Louis Schipper, Richard P. Silberstein, Lina Teckentrup, Sally E. Thompson, Anna M. Ukkola, Aaron Wall, Ying Ping Wang, Tim J. Wardlaw, William Woodgate

Research output: Contribution to journalReview articlepeer-review

2 Downloads (Pure)

Abstract

In 2020, the Australian and New Zealand flux research and monitoring network, OzFlux, celebrated its 20th anniversary by reflecting on the lessons learned through two decades of ecosystem studies on global change biology. OzFlux is a network not only for ecosystem researchers, but also for those ‘next users’ of the knowledge, information and data that such networks provide. Here, we focus on eight lessons across topics of climate change and variability, disturbance and resilience, drought and heat stress and synergies with remote sensing and modelling. In distilling the key lessons learned, we also identify where further research is needed to fill knowledge gaps and improve the utility and relevance of the outputs from OzFlux. Extreme climate variability across Australia and New Zealand (droughts and flooding rains) provides a natural laboratory for a global understanding of ecosystems in this time of accelerating climate change. As evidence of worsening global fire risk emerges, the natural ability of these ecosystems to recover from disturbances, such as fire and cyclones, provides lessons on adaptation and resilience to disturbance. Drought and heatwaves are common occurrences across large parts of the region and can tip an ecosystem's carbon budget from a net CO2 sink to a net CO2 source. Despite such responses to stress, ecosystems at OzFlux sites show their resilience to climate variability by rapidly pivoting back to a strong carbon sink upon the return of favourable conditions. Located in under-represented areas, OzFlux data have the potential for reducing uncertainties in global remote sensing products, and these data provide several opportunities to develop new theories and improve our ecosystem models. The accumulated impacts of these lessons over the last 20 years highlights the value of long-term flux observations for natural and managed systems. A future vision for OzFlux includes ongoing and newly developed synergies with ecophysiologists, ecologists, geologists, remote sensors and modellers.

Original languageEnglish
Pages (from-to)3489-3514
Number of pages26
JournalGlobal Change Biology
Volume28
Issue number11
Early online date22 Mar 2022
DOIs
Publication statusPublished - Jun 2022

Fingerprint

Dive into the research topics of 'Bridge to the future: Important lessons from 20 years of ecosystem observations made by the OzFlux network'. Together they form a unique fingerprint.

Cite this