Abstract
Pacific tarpon (Megalops cyprinoides) use a modified gas bladder as an air-breathing organ (ABO). We examined changes in cardiac output (V?b) associated with increases in air-breathing that accompany exercise and aquatic hypoxia. Juvenile (0.49�kg) and adult (1.21�kg) tarpon were allowed to recover in a swim flume at 27��C after being instrumented with a Doppler flow probe around the ventral aorta to monitor V?b and with a fibre-optic oxygen sensor in the ABO to monitor air-breathing frequency. Under normoxic conditions and in both juveniles and adults, routine air-breathing frequency was 0.03�breaths min- 1 and V?b was about 15�mL min- 1 kg- 1. Normoxic exercise (swimming at about 1.1 body lengths s- 1) increased air-breathing frequency by 8-fold in both groups (reaching 0.23�breaths min- 1) and increased V?b by 3-fold for juveniles and 2-fold for adults. Hypoxic exposure (2�kPa O2) at rest increased air-breathing frequency 19-fold (to around 0.53�breaths min- 1) in both groups, and while V?b again increased 3-fold in resting juvenile fish, V?b was unchanged in resting adult fish. Exercise in hypoxia increased air-breathing frequency 35-fold (to 0.95�breaths min- 1) in comparison with resting normoxic fish. While juvenile fish increased V?b nearly 2-fold with exercise in hypoxia, adult fish maintained the same V?b irrespective of exercise state and became agitated in comparison. These results imply that air-breathing during exercise and hypoxia can benefit oxygen delivery, but to differing degrees in juvenile and adult tarpon. We discuss this difference in the context of myocardial oxygen supply. � 2007 Elsevier Inc. All rights reserved.
Original language | English |
---|---|
Pages (from-to) | 562-571 |
Number of pages | 10 |
Journal | Comparative biochemistry and physiology. Part A, Molecular & integrative physiology |
Volume | 148 |
Issue number | 3 |
Publication status | Published - 2007 |