TY - JOUR
T1 - Comparative study of ten machine learning algorithms for short-term forecasting in gas warning systems
AU - Wu, Robert M.X.
AU - Shafiabady, Niusha
AU - Zhang, Huan
AU - Lu, Haiyan
AU - Gide, Ergun
AU - Liu, Jinrong
AU - Charbonnier, Clement Franck Benoit
PY - 2024/9
Y1 - 2024/9
N2 - This research aims to explore more efficient machine learning (ML) algorithms with better performance for short-term forecasting. Up-to-date literature shows a lack of research on selecting practical ML algorithms for short-term forecasting in real-time industrial applications. This research uses a quantitative and qualitative mixed method combining two rounds of literature reviews, a case study, and a comparative analysis. Ten widely used ML algorithms are selected to conduct a comparative study of gas warning systems in a case study mine. We propose a new assessment visualization tool: a 2D space-based quadrant diagram can be used to visually map prediction error assessment and predictive performance assessment for tested algorithms. Overall, this visualization tool indicates that LR, RF, and SVM are more efficient ML algorithms with overall prediction performance for short-term forecasting. This research indicates ten tested algorithms can be visually mapped onto optimal (LR, RF, and SVM), efficient (ARIMA), suboptimal (BP-SOG, KNN, and Perceptron), and inefficient algorithms (RNN, BP_Resilient, and LSTM). The case study finds results that differ from previous studies regarding the ML efficiency of ARIMA, KNN, LR, LSTM, and SVM. This study finds different views on the prediction performance of a few paired algorithms compared with previous studies, including RF and LR, SVM and RF, KNN and ARIMA, KNN and SVM, RNN and ARIMA, and LSTM and SVM. This study also suggests that ARIMA, KNN, LR, and LSTM should be investigated further with additional prediction error assessments. Overall, no single algorithm can fit all applications. This study raises 20 valuable questions for further research.
AB - This research aims to explore more efficient machine learning (ML) algorithms with better performance for short-term forecasting. Up-to-date literature shows a lack of research on selecting practical ML algorithms for short-term forecasting in real-time industrial applications. This research uses a quantitative and qualitative mixed method combining two rounds of literature reviews, a case study, and a comparative analysis. Ten widely used ML algorithms are selected to conduct a comparative study of gas warning systems in a case study mine. We propose a new assessment visualization tool: a 2D space-based quadrant diagram can be used to visually map prediction error assessment and predictive performance assessment for tested algorithms. Overall, this visualization tool indicates that LR, RF, and SVM are more efficient ML algorithms with overall prediction performance for short-term forecasting. This research indicates ten tested algorithms can be visually mapped onto optimal (LR, RF, and SVM), efficient (ARIMA), suboptimal (BP-SOG, KNN, and Perceptron), and inefficient algorithms (RNN, BP_Resilient, and LSTM). The case study finds results that differ from previous studies regarding the ML efficiency of ARIMA, KNN, LR, LSTM, and SVM. This study finds different views on the prediction performance of a few paired algorithms compared with previous studies, including RF and LR, SVM and RF, KNN and ARIMA, KNN and SVM, RNN and ARIMA, and LSTM and SVM. This study also suggests that ARIMA, KNN, LR, and LSTM should be investigated further with additional prediction error assessments. Overall, no single algorithm can fit all applications. This study raises 20 valuable questions for further research.
KW - Assessment visualization tool
KW - Case study
KW - Gas warning systems
KW - Machine learning algorithms
KW - Short-term forecasting
UR - http://www.scopus.com/inward/record.url?scp=85204476169&partnerID=8YFLogxK
U2 - 10.1038/s41598-024-67283-4
DO - 10.1038/s41598-024-67283-4
M3 - Article
C2 - 39304669
AN - SCOPUS:85204476169
SN - 2045-2322
VL - 14
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 21969
ER -