### Abstract

Original language | English |
---|---|

Pages (from-to) | 73-94 |

Number of pages | 22 |

Journal | Australasian Journal of Combinatorics |

Volume | 55 |

Publication status | Published - 2013 |

### Fingerprint

### Cite this

*Australasian Journal of Combinatorics*,

*55*, 73-94.

}

*Australasian Journal of Combinatorics*, vol. 55, pp. 73-94.

**Completely separating systems of k-sets for (k−1/2).** / Roberts, Ian; D'Arcy, Suzanne; Gronau, Hans-Dietrich O.F.

Research output: Contribution to journal › Article › Research › peer-review

TY - JOUR

T1 - Completely separating systems of k-sets for (k−1/2)

AU - Roberts, Ian

AU - D'Arcy, Suzanne

AU - Gronau, Hans-Dietrich O.F

PY - 2013

Y1 - 2013

N2 - Here R(n, k) denotes the minimum possible size of a completely separating system C on [n] with {pipe}A{pipe} = k for each A ? C. Values of R(n, k) are determined for (k-1 2) ? n < (k 2) or 11 ? n ? 12. Using the dual interpretation of completely separating systems as antichains, this paper provides corresponding results for dual k-regular antichains.

AB - Here R(n, k) denotes the minimum possible size of a completely separating system C on [n] with {pipe}A{pipe} = k for each A ? C. Values of R(n, k) are determined for (k-1 2) ? n < (k 2) or 11 ? n ? 12. Using the dual interpretation of completely separating systems as antichains, this paper provides corresponding results for dual k-regular antichains.

UR - https://ajc.maths.uq.edu.au/?page=get_volumes&volume=55

M3 - Article

VL - 55

SP - 73

EP - 94

JO - Australasian Journal of Combinatorics

JF - Australasian Journal of Combinatorics

SN - 1034-4942

ER -