Completely separating systems of k-sets for (k−1/2)

Ian Roberts, Suzanne D'Arcy, Hans-Dietrich O.F Gronau

    Research output: Contribution to journalArticleResearchpeer-review

    1 Downloads (Pure)

    Abstract

    Here R(n, k) denotes the minimum possible size of a completely separating system C on [n] with {pipe}A{pipe} = k for each A ? C. Values of R(n, k) are determined for (k-1 2) ? n < (k 2) or 11 ? n ? 12. Using the dual interpretation of completely separating systems as antichains, this paper provides corresponding results for dual k-regular antichains.
    Original languageEnglish
    Pages (from-to)73-94
    Number of pages22
    JournalAustralasian Journal of Combinatorics
    Volume55
    Publication statusPublished - 2013

    Fingerprint

    Antichain
    Denote
    Interpretation

    Cite this

    Roberts, I., D'Arcy, S., & Gronau, H-D. O. F. (2013). Completely separating systems of k-sets for (k−1/2). Australasian Journal of Combinatorics, 55, 73-94.
    Roberts, Ian ; D'Arcy, Suzanne ; Gronau, Hans-Dietrich O.F. / Completely separating systems of k-sets for (k−1/2). In: Australasian Journal of Combinatorics. 2013 ; Vol. 55. pp. 73-94.
    @article{cc90b75097224d69839222eb1d6bdd35,
    title = "Completely separating systems of k-sets for (k−1/2)",
    abstract = "Here R(n, k) denotes the minimum possible size of a completely separating system C on [n] with {pipe}A{pipe} = k for each A ? C. Values of R(n, k) are determined for (k-1 2) ? n < (k 2) or 11 ? n ? 12. Using the dual interpretation of completely separating systems as antichains, this paper provides corresponding results for dual k-regular antichains.",
    author = "Ian Roberts and Suzanne D'Arcy and Gronau, {Hans-Dietrich O.F}",
    year = "2013",
    language = "English",
    volume = "55",
    pages = "73--94",
    journal = "Australasian Journal of Combinatorics",
    issn = "1034-4942",
    publisher = "Centre for Discrete Mathematics & Computing",

    }

    Roberts, I, D'Arcy, S & Gronau, H-DOF 2013, 'Completely separating systems of k-sets for (k−1/2)', Australasian Journal of Combinatorics, vol. 55, pp. 73-94.

    Completely separating systems of k-sets for (k−1/2). / Roberts, Ian; D'Arcy, Suzanne; Gronau, Hans-Dietrich O.F.

    In: Australasian Journal of Combinatorics, Vol. 55, 2013, p. 73-94.

    Research output: Contribution to journalArticleResearchpeer-review

    TY - JOUR

    T1 - Completely separating systems of k-sets for (k−1/2)

    AU - Roberts, Ian

    AU - D'Arcy, Suzanne

    AU - Gronau, Hans-Dietrich O.F

    PY - 2013

    Y1 - 2013

    N2 - Here R(n, k) denotes the minimum possible size of a completely separating system C on [n] with {pipe}A{pipe} = k for each A ? C. Values of R(n, k) are determined for (k-1 2) ? n < (k 2) or 11 ? n ? 12. Using the dual interpretation of completely separating systems as antichains, this paper provides corresponding results for dual k-regular antichains.

    AB - Here R(n, k) denotes the minimum possible size of a completely separating system C on [n] with {pipe}A{pipe} = k for each A ? C. Values of R(n, k) are determined for (k-1 2) ? n < (k 2) or 11 ? n ? 12. Using the dual interpretation of completely separating systems as antichains, this paper provides corresponding results for dual k-regular antichains.

    UR - https://ajc.maths.uq.edu.au/?page=get_volumes&volume=55

    M3 - Article

    VL - 55

    SP - 73

    EP - 94

    JO - Australasian Journal of Combinatorics

    JF - Australasian Journal of Combinatorics

    SN - 1034-4942

    ER -