TY - JOUR
T1 - Completely separating systems of k-sets for (k−1/2)
AU - Roberts, Ian
AU - D'Arcy, Suzanne
AU - Gronau, Hans-Dietrich O.F
PY - 2013
Y1 - 2013
N2 - Here R(n, k) denotes the minimum possible size of a completely separating system C on [n] with {pipe}A{pipe} = k for each A ? C. Values of R(n, k) are determined for (k-1 2) ? n < (k 2) or 11 ? n ? 12. Using the dual interpretation of completely separating systems as antichains, this paper provides corresponding results for dual k-regular antichains.
AB - Here R(n, k) denotes the minimum possible size of a completely separating system C on [n] with {pipe}A{pipe} = k for each A ? C. Values of R(n, k) are determined for (k-1 2) ? n < (k 2) or 11 ? n ? 12. Using the dual interpretation of completely separating systems as antichains, this paper provides corresponding results for dual k-regular antichains.
UR - https://ajc.maths.uq.edu.au/?page=get_volumes&volume=55
M3 - Article
VL - 55
SP - 73
EP - 94
JO - Australasian Journal of Combinatorics
JF - Australasian Journal of Combinatorics
SN - 1034-4942
ER -