TY - JOUR
T1 - DEEP-FEL
T2 - Decentralized, Efficient and Privacy-Enhanced Federated Edge Learning for Healthcare Cyber Physical Systems
AU - Lian, Zhuotao
AU - Yang, Qinglin
AU - Wang, Weizheng
AU - Zeng, Qingkui
AU - Alazab, Mamoun
AU - Zhao, Hong
AU - Su, Chunhua
PY - 2022/9
Y1 - 2022/9
N2 - The rapid development of Internet of Things (IoT) stimulates the innovation for the health-related devicessuch as remote patient monitoring, connected inhalers and ingestible sensors. Simultaneously, with the aid of numerous equipments, a great number of collected data can be used for disease prediction or diagnosis model establishment. However, the potential patient data leak will also bring privacy and security issues in the interactionperiod. To deal with these existing issues, we propose a decentralized, efficient, and privacy-enhanced federated edge learning system called DEEP-FEL, which enables medical devices in different institutions to collaboratively train a global model without raw data mutual exchange. Firstly, we design a hierarchical ring topology to alleviate centralization of the conventional training framework, and formulate the ring construction as an optimization problem, which can be solved by an efficient heuristic algorithm. Subsequently, we design an efficient parameter aggregation algorithm for distributed medical institutions to generate a new global model, and the total amount of data transmitted by N nodes is only 2/N times that of traditional algorithm. In addition, data security among different medical institutions is enhanced by adding artificial noise to the edge model. Finally, experimental results on three medical datasets demonstrate the superiority of our system.
AB - The rapid development of Internet of Things (IoT) stimulates the innovation for the health-related devicessuch as remote patient monitoring, connected inhalers and ingestible sensors. Simultaneously, with the aid of numerous equipments, a great number of collected data can be used for disease prediction or diagnosis model establishment. However, the potential patient data leak will also bring privacy and security issues in the interactionperiod. To deal with these existing issues, we propose a decentralized, efficient, and privacy-enhanced federated edge learning system called DEEP-FEL, which enables medical devices in different institutions to collaboratively train a global model without raw data mutual exchange. Firstly, we design a hierarchical ring topology to alleviate centralization of the conventional training framework, and formulate the ring construction as an optimization problem, which can be solved by an efficient heuristic algorithm. Subsequently, we design an efficient parameter aggregation algorithm for distributed medical institutions to generate a new global model, and the total amount of data transmitted by N nodes is only 2/N times that of traditional algorithm. In addition, data security among different medical institutions is enhanced by adding artificial noise to the edge model. Finally, experimental results on three medical datasets demonstrate the superiority of our system.
KW - Collaborative work
KW - Cyber physical systems
KW - decentralized system
KW - differential privacy
KW - federated learning
KW - Medical services
KW - Mobile handsets
KW - mobile healthcare
KW - Peer-to-peer computing
KW - Servers
KW - Topology
KW - Training
UR - http://www.scopus.com/inward/record.url?scp=85130436965&partnerID=8YFLogxK
U2 - 10.1109/TNSE.2022.3175945
DO - 10.1109/TNSE.2022.3175945
M3 - Article
AN - SCOPUS:85130436965
SN - 2327-4697
VL - 9
SP - 3558
EP - 3569
JO - IEEE Transactions on Network Science and Engineering
JF - IEEE Transactions on Network Science and Engineering
IS - 5
ER -