@inproceedings{bee6fc1f90d642a9b204027a0a609fcd,
title = "Detecting DDoS attacks using a cascade of machine learning classifiers based on Random Forest and MLP-ANN",
abstract = "Distributed Denial of Service (DDoS) attacks are one of the most versatile and powerful cyber-attack that has remarkably grown in sophistication, throughput as well as bandwidth. In addition to multiple efficient, effective, and accurate ML approaches been proposed over the years, DDoS detection remains a challenge due to ever-growing advancements in network technology. In this paper, a hybrid approach incorporating machine learning algorithms towards the detection of DDoS attacks is proposed. This approach includes a classifier that is formed by cascading two machine learning algorithms, Random Forest (RF) with a Multi-layer Perceptron (MLP) Neural Network. These algorithms were chosen due to their high real-time accuracies, efficiency, adaptability, and flexibility in changing the parameters which is vital due to the complex and changeable nature of network technology, that may cause inaccurate results if a set of features turn obsolete over time. Feature selection is done carefully to obtain the highest possible accuracy and efficiency through Information Gain (IG) algorithm which would aid towards detection of modern cyber-attacks including zero-day attacks.",
keywords = "Distributed Denial of Service, Random Forest, MLP, Neural Network, Supervised learning",
author = "Trevor Pinto and Yakub Sebastian",
note = "Publisher Copyright: {\textcopyright} 2021 IEEE.; 2021 IEEE Madras Section International Conference, MASCON 2021 ; Conference date: 27-08-2021 Through 28-08-2021",
year = "2021",
month = aug,
day = "27",
doi = "10.1109/MASCON51689.2021.9563266",
language = "English",
isbn = "978-1-6654-4736-2",
series = "Proceedings of the IEEE Madras Section International Conference 2021, MASCON 2021",
publisher = "IEEE, Institute of Electrical and Electronics Engineers",
pages = "1--7",
booktitle = "Proceedings of the IEEE Madras Section International Conference 2021, MASCON 2021",
address = "United States",
}