Abstract
Evaluating the physiological demands of BMX cycling on a track provides coaches with the information required to prescribe more effective training programmes. To determine the relative importance of physiological factors during simulated BMX race, 12 male riders (age 19.2 ± 3.5 years, height 1.76 ± 0.06 m, mass 68.5 ± 4.3 kg) completed a maximum aerobic capacity ((Figure presented.)) test in a laboratory, and a week later, completed six laps on a BMX track interspersed by 15 min passive recovery. Peak power, immediate post-lap (Figure presented.), blood lactate, and heart rate were measured in each lap. Peak power to weight ratio was significantly correlated with lap time, however, the strength of this association decreased in each subsequent lap. Mean (Figure presented.) was greater than 80% of laboratory-measured (Figure presented.) in every lap, indicating a strong contribution of the aerobic energy system during BMX racing. This study also identified that mean blood lactate was significantly associated with lap time, which showed the importance of the anaerobic energy system contribution to BMX race. Despite the short period of pedalling during BMX racing, both aerobic and anaerobic energy systems are important contributors to lap performance. Coaches should consider maximising both anaerobic power and aerobic capacity to improve riders’ overall performance in multiple laps.
Original language | English |
---|---|
Pages (from-to) | 1699-1707 |
Number of pages | 10 |
Journal | European Journal of Sport Science |
Volume | 21 |
Issue number | 12 |
Early online date | 28 Jan 2021 |
DOIs | |
Publication status | Published - 2021 |
Bibliographical note
Publisher Copyright:© 2021 European College of Sport Science.
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.