Abstract
Background: Disorders of sex development (DSD) are congenital conditions in which chromosomal, gonadal, or phenotypic sex is atypical. Clinical management of DSD is often difficult and currently only 13% of patients receive an accurate clinical genetic diagnosis. To address this we have developed a massively parallel sequencing targeted DSD gene panel which allows us to sequence all 64 known diagnostic DSD genes and candidate genes simultaneously. Results: We analyzed DNA from the largest reported international cohort of patients with DSD (278 patients with 46,XY DSD and 48 with 46,XX DSD). Our targeted gene panel compares favorably with other sequencing platforms. We found a total of 28 diagnostic genes that are implicated in DSD, highlighting the genetic spectrum of this disorder. Sequencing revealed 93 previously unreported DSD gene variants. Overall, we identified a likely genetic diagnosis in 43% of patients with 46,XY DSD. In patients with 46,XY disorders of androgen synthesis and action the genetic diagnosis rate reached 60%. Surprisingly, little difference in diagnostic rate was observed between singletons and trios. In many cases our findings are informative as to the likely cause of the DSD, which will facilitate clinical management. Conclusions: Our massively parallel sequencing targeted DSD gene panel represents an economical means of improving the genetic diagnostic capability for patients affected by DSD. Implementation of this panel in a large cohort of patients has expanded our understanding of the underlying genetic etiology of DSD. The inclusion of research candidate genes also provides an invaluable resource for future identification of novel genes.
Original language | English |
---|---|
Article number | 243 |
Pages (from-to) | 1-21 |
Number of pages | 21 |
Journal | Genome Biology |
Volume | 17 |
Issue number | 1 |
DOIs | |
Publication status | Published - 29 Nov 2016 |
Externally published | Yes |
Bibliographical note
Funding Information:The authors’ research work was supported by The National Health and Medical Research Council, Australia (Program grant number 546517 to A.S., P.K. V.R.H.), the Helen Macpherson Smith Trust (Partnership grant 6846 to A.S.), the Ian Potter Centre for Genomics and Personalised Medicine to A.S., The University of Melbourne (MIRS to S.E.), The Australian Government, Department of Innovation, Industry, Science and Research (IPRS to S.E.), and the Victorian Government’s Operational Infrastructure Support Program, and the National Health and Medical Research Council Australia Independent Medical Research Institutes Infrastructure Support Scheme (S.E.). S.S. received funding from the Australian Government through an Australian Postgraduate Award and from the Victorian Life Sciences Computation Initiative.
Publisher Copyright:
© 2016 The Author(s).
Copyright:
Copyright 2018 Elsevier B.V., All rights reserved.