Driver Identification Using Optimized Deep Learning Model in Smart Transportation

Chandrasekar Ravi, Anmol Tigga, G. Thippa Reddy, Saqib Hakak, Mamoun Alazab

    Research output: Contribution to journalArticlepeer-review

    24 Citations (Scopus)

    Abstract

    The Intelligent Transportation System (ITS) is said to revolutionize the travel experience by making it safe, secure, and comfortable for the people. Although vehicles have been automated up to a certain extent, it still has critical security issues that require thorough study and advanced solutions. The security vulnerabilities of ITS allows the attacker to steal the vehicle. Therefore, the identification of drivers is required in order to develop a safe and secure system so that the vehicles can be protected from theft. There are two ways in which a driver can be identified: 1) face recognition of the driver, and 2) based on driving behavior. Face recognition includes image processing of 2-D images and learning of the features, which require high computational power. Drivers are known to have unique driving styles, whose data can be captured by the sensors. Therefore, the second method identifies drivers based on the analysis of the sensor data and it requires comparatively lesser computational power. In this paper, an optimized deep learning model is trained on the sensor data to correctly identify the drivers. The Long Short-Term Memory (LSTM) deep learning model is optimized for better performance. The novelty of the approach in this work is the inclusion of hyperparameter tuning using a nature-inspired optimization algorithm, which is an important and essential step in discovering the optimal hyperparameters for training the model which in turn increases the accuracy. The CAN-BUS dataset is used for experimentation and evaluation of the training model. Evaluation parameters such as accuracy, precision score, F1 score, and ROC AUC curve are considered to evaluate the performance of the model.

    Original languageEnglish
    Article number84
    Pages (from-to)1-17
    Number of pages17
    JournalACM Transactions on Internet Technology
    Volume22
    Issue number4
    DOIs
    Publication statusPublished - 14 Nov 2022

    Bibliographical note

    Publisher Copyright:
    © 2022 Association for Computing Machinery.

    Fingerprint

    Dive into the research topics of 'Driver Identification Using Optimized Deep Learning Model in Smart Transportation'. Together they form a unique fingerprint.

    Cite this