Enhanced efficiency of dye-sensitized solar cells based on Mg and la co-doped TiO2 photoanodes

Ako Rajour Tanyi, Alwani Imanah Rafieh, Piyasiri Ekaneyaka, Ai Ling Tan, David James Young, Zhang Zheng, Vijila Chellappan, Gomathy Sandhya Subramanian, R. L N Chandrakanthi

Research output: Contribution to journalArticleResearchpeer-review

Abstract

The efficiency of Dye-Sensitized Solar Cells (DSSC) can be significantly enhanced by optimizing the concentration of surface trap states and by tailoring the band gap energy in the semiconductor oxides used as photoanodes. Magnesium (Mg) and Lanthanum (La) ions have been co-doped onto TiO2 and used for the fabrication of photoanodes for DSSC. The doped TiO2 particles were characterized by SEM, XRF, XRD, Raman, XPS and UV-vis diffuse reflection spectroscopy. The fabricated cells were characterized by I-V and EIS techniques. XRD and Raman measurements performed on the doped powders showed only peaks ascribed to pure anatase. The particle sizes were significantly reduced by doping with the double metal ions, La and Mg, as calculated by the Scherrer equation using the anatase XRD 101 peaks. Current - voltage measurements on the fabricated DSSC presented maximum photoelectric conversion efficiency (PCE) of 8.04% from cells with 0.5 mol.% Mg and La co-doped TiO2 anodes (0.5MgLa-TiO2), which gave a 20% improvement over cells with pure TiO2 anodes that had 6.7% PCE. The DSSC performance reduced gradually to 6.67 and 5.45 as the concentration of the co-dopants, Mg and La increased to 1 and 2 mol.% respectively. DSSC with 1 mol.% Mg doped TiO2 photoanodes (1Mg-TiO2) and 1 mol.% La doped TiO2 photoanodes (1La-TiO2) reached 6.8% and 7.6% PCE, respectively, lower than that of 0.5MgLa-TiO2. EIS analysis showed that the DSSC with co-doped TiO2 anodes indicated an overall stronger resistance to charge recombination with the electrolyte than those with the single doped and pure TiO2 photoanodes. 0.5MgLa-TiO2 was found to be the optimum concentration for DSSC efficiency with reduced charge recombination. This is attributed to the elevation of free surface state energy and the presence oxygen vacancy (trap states) as compared to pure TiO2.

Original languageEnglish
Pages (from-to)240-248
Number of pages9
JournalElectrochimica Acta
Volume178
DOIs
Publication statusPublished - 1 Oct 2015
Externally publishedYes

Fingerprint

Magnesium
Lanthanum
Conversion efficiency
Anodes
Titanium dioxide
Doping (additives)
Voltage measurement
Surface states
Electric current measurement
Oxygen vacancies
Dye-sensitized solar cells
Powders
Electrolytes
Metal ions
Energy gap
X ray photoelectron spectroscopy
Particle size
Spectroscopy
Ions
Fabrication

Cite this

Tanyi, A. R., Rafieh, A. I., Ekaneyaka, P., Tan, A. L., Young, D. J., Zheng, Z., ... Chandrakanthi, R. L. N. (2015). Enhanced efficiency of dye-sensitized solar cells based on Mg and la co-doped TiO2 photoanodes. Electrochimica Acta, 178, 240-248. https://doi.org/10.1016/j.electacta.2015.07.172
Tanyi, Ako Rajour ; Rafieh, Alwani Imanah ; Ekaneyaka, Piyasiri ; Tan, Ai Ling ; Young, David James ; Zheng, Zhang ; Chellappan, Vijila ; Subramanian, Gomathy Sandhya ; Chandrakanthi, R. L N. / Enhanced efficiency of dye-sensitized solar cells based on Mg and la co-doped TiO2 photoanodes. In: Electrochimica Acta. 2015 ; Vol. 178. pp. 240-248.
@article{07da261a35c3439f906cbddadad6be35,
title = "Enhanced efficiency of dye-sensitized solar cells based on Mg and la co-doped TiO2 photoanodes",
abstract = "The efficiency of Dye-Sensitized Solar Cells (DSSC) can be significantly enhanced by optimizing the concentration of surface trap states and by tailoring the band gap energy in the semiconductor oxides used as photoanodes. Magnesium (Mg) and Lanthanum (La) ions have been co-doped onto TiO2 and used for the fabrication of photoanodes for DSSC. The doped TiO2 particles were characterized by SEM, XRF, XRD, Raman, XPS and UV-vis diffuse reflection spectroscopy. The fabricated cells were characterized by I-V and EIS techniques. XRD and Raman measurements performed on the doped powders showed only peaks ascribed to pure anatase. The particle sizes were significantly reduced by doping with the double metal ions, La and Mg, as calculated by the Scherrer equation using the anatase XRD 101 peaks. Current - voltage measurements on the fabricated DSSC presented maximum photoelectric conversion efficiency (PCE) of 8.04{\%} from cells with 0.5 mol.{\%} Mg and La co-doped TiO2 anodes (0.5MgLa-TiO2), which gave a 20{\%} improvement over cells with pure TiO2 anodes that had 6.7{\%} PCE. The DSSC performance reduced gradually to 6.67 and 5.45 as the concentration of the co-dopants, Mg and La increased to 1 and 2 mol.{\%} respectively. DSSC with 1 mol.{\%} Mg doped TiO2 photoanodes (1Mg-TiO2) and 1 mol.{\%} La doped TiO2 photoanodes (1La-TiO2) reached 6.8{\%} and 7.6{\%} PCE, respectively, lower than that of 0.5MgLa-TiO2. EIS analysis showed that the DSSC with co-doped TiO2 anodes indicated an overall stronger resistance to charge recombination with the electrolyte than those with the single doped and pure TiO2 photoanodes. 0.5MgLa-TiO2 was found to be the optimum concentration for DSSC efficiency with reduced charge recombination. This is attributed to the elevation of free surface state energy and the presence oxygen vacancy (trap states) as compared to pure TiO2.",
keywords = "charge transfer resistance, co-doped TiO<inf>2</inf>, DSSC, La, Mg",
author = "Tanyi, {Ako Rajour} and Rafieh, {Alwani Imanah} and Piyasiri Ekaneyaka and Tan, {Ai Ling} and Young, {David James} and Zhang Zheng and Vijila Chellappan and Subramanian, {Gomathy Sandhya} and Chandrakanthi, {R. L N}",
note = "Referred to by Ako Rajour Tanyi, Alwani Imanah Rafieh, Piyasiri Ekaneyaka, Ai Ling Tan, David James Young, Zhang Zheng, Vijila Chellappan, Gomathy Sandhya Subramanian, R.L.N. Chandrakanthi Electrochimica Acta, Volume 180, 20 October 2015, Pages 1094 https://doi.org/10.1016/j.electacta.2015.09.134",
year = "2015",
month = "10",
day = "1",
doi = "10.1016/j.electacta.2015.07.172",
language = "English",
volume = "178",
pages = "240--248",
journal = "Electrochimica Acta",
issn = "0013-4686",
publisher = "Elsevier",

}

Tanyi, AR, Rafieh, AI, Ekaneyaka, P, Tan, AL, Young, DJ, Zheng, Z, Chellappan, V, Subramanian, GS & Chandrakanthi, RLN 2015, 'Enhanced efficiency of dye-sensitized solar cells based on Mg and la co-doped TiO2 photoanodes', Electrochimica Acta, vol. 178, pp. 240-248. https://doi.org/10.1016/j.electacta.2015.07.172

Enhanced efficiency of dye-sensitized solar cells based on Mg and la co-doped TiO2 photoanodes. / Tanyi, Ako Rajour; Rafieh, Alwani Imanah; Ekaneyaka, Piyasiri; Tan, Ai Ling; Young, David James; Zheng, Zhang; Chellappan, Vijila; Subramanian, Gomathy Sandhya; Chandrakanthi, R. L N.

In: Electrochimica Acta, Vol. 178, 01.10.2015, p. 240-248.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Enhanced efficiency of dye-sensitized solar cells based on Mg and la co-doped TiO2 photoanodes

AU - Tanyi, Ako Rajour

AU - Rafieh, Alwani Imanah

AU - Ekaneyaka, Piyasiri

AU - Tan, Ai Ling

AU - Young, David James

AU - Zheng, Zhang

AU - Chellappan, Vijila

AU - Subramanian, Gomathy Sandhya

AU - Chandrakanthi, R. L N

N1 - Referred to by Ako Rajour Tanyi, Alwani Imanah Rafieh, Piyasiri Ekaneyaka, Ai Ling Tan, David James Young, Zhang Zheng, Vijila Chellappan, Gomathy Sandhya Subramanian, R.L.N. Chandrakanthi Electrochimica Acta, Volume 180, 20 October 2015, Pages 1094 https://doi.org/10.1016/j.electacta.2015.09.134

PY - 2015/10/1

Y1 - 2015/10/1

N2 - The efficiency of Dye-Sensitized Solar Cells (DSSC) can be significantly enhanced by optimizing the concentration of surface trap states and by tailoring the band gap energy in the semiconductor oxides used as photoanodes. Magnesium (Mg) and Lanthanum (La) ions have been co-doped onto TiO2 and used for the fabrication of photoanodes for DSSC. The doped TiO2 particles were characterized by SEM, XRF, XRD, Raman, XPS and UV-vis diffuse reflection spectroscopy. The fabricated cells were characterized by I-V and EIS techniques. XRD and Raman measurements performed on the doped powders showed only peaks ascribed to pure anatase. The particle sizes were significantly reduced by doping with the double metal ions, La and Mg, as calculated by the Scherrer equation using the anatase XRD 101 peaks. Current - voltage measurements on the fabricated DSSC presented maximum photoelectric conversion efficiency (PCE) of 8.04% from cells with 0.5 mol.% Mg and La co-doped TiO2 anodes (0.5MgLa-TiO2), which gave a 20% improvement over cells with pure TiO2 anodes that had 6.7% PCE. The DSSC performance reduced gradually to 6.67 and 5.45 as the concentration of the co-dopants, Mg and La increased to 1 and 2 mol.% respectively. DSSC with 1 mol.% Mg doped TiO2 photoanodes (1Mg-TiO2) and 1 mol.% La doped TiO2 photoanodes (1La-TiO2) reached 6.8% and 7.6% PCE, respectively, lower than that of 0.5MgLa-TiO2. EIS analysis showed that the DSSC with co-doped TiO2 anodes indicated an overall stronger resistance to charge recombination with the electrolyte than those with the single doped and pure TiO2 photoanodes. 0.5MgLa-TiO2 was found to be the optimum concentration for DSSC efficiency with reduced charge recombination. This is attributed to the elevation of free surface state energy and the presence oxygen vacancy (trap states) as compared to pure TiO2.

AB - The efficiency of Dye-Sensitized Solar Cells (DSSC) can be significantly enhanced by optimizing the concentration of surface trap states and by tailoring the band gap energy in the semiconductor oxides used as photoanodes. Magnesium (Mg) and Lanthanum (La) ions have been co-doped onto TiO2 and used for the fabrication of photoanodes for DSSC. The doped TiO2 particles were characterized by SEM, XRF, XRD, Raman, XPS and UV-vis diffuse reflection spectroscopy. The fabricated cells were characterized by I-V and EIS techniques. XRD and Raman measurements performed on the doped powders showed only peaks ascribed to pure anatase. The particle sizes were significantly reduced by doping with the double metal ions, La and Mg, as calculated by the Scherrer equation using the anatase XRD 101 peaks. Current - voltage measurements on the fabricated DSSC presented maximum photoelectric conversion efficiency (PCE) of 8.04% from cells with 0.5 mol.% Mg and La co-doped TiO2 anodes (0.5MgLa-TiO2), which gave a 20% improvement over cells with pure TiO2 anodes that had 6.7% PCE. The DSSC performance reduced gradually to 6.67 and 5.45 as the concentration of the co-dopants, Mg and La increased to 1 and 2 mol.% respectively. DSSC with 1 mol.% Mg doped TiO2 photoanodes (1Mg-TiO2) and 1 mol.% La doped TiO2 photoanodes (1La-TiO2) reached 6.8% and 7.6% PCE, respectively, lower than that of 0.5MgLa-TiO2. EIS analysis showed that the DSSC with co-doped TiO2 anodes indicated an overall stronger resistance to charge recombination with the electrolyte than those with the single doped and pure TiO2 photoanodes. 0.5MgLa-TiO2 was found to be the optimum concentration for DSSC efficiency with reduced charge recombination. This is attributed to the elevation of free surface state energy and the presence oxygen vacancy (trap states) as compared to pure TiO2.

KW - charge transfer resistance

KW - co-doped TiO<inf>2</inf>

KW - DSSC

KW - La

KW - Mg

UR - http://www.scopus.com/inward/record.url?scp=84939153597&partnerID=8YFLogxK

U2 - 10.1016/j.electacta.2015.07.172

DO - 10.1016/j.electacta.2015.07.172

M3 - Article

VL - 178

SP - 240

EP - 248

JO - Electrochimica Acta

JF - Electrochimica Acta

SN - 0013-4686

ER -