Environmental, Energy, and Water Footprints of Marble Tile Production Chain in a Life Cycle Perspective

Tehseen Ahmad, Majid Hussain, Mudassar Iqbal, Ashfaq Ali, Wajiha Manzoor, Hamida Bibi, Shamsher Ali, Fariha Rehman, Ahmad Rashedi, Muhammad Amin, Anila Tabassum, Ghulam Raza, Dilawar Farhan Shams

Research output: Contribution to journalArticlepeer-review

1 Downloads (Pure)

Abstract

The marble industry is growing in Pakistan, and Khyber Pakhtunkhwa province is the largest producer of marble tiles in Pakistan. Marble production consumes a considerable amount of water during its life cycle stages and impacts various environmental compartments, such as air, water, and soil; therefore, this study aimed to quantify the environmental impacts, water footprint, and cumulative energy demand of one-tonne marble tile manufactured in a small industrial estate Mardan (SIEM), Pakistan, and provide recommendations to improve its environmental impact profile. The study covers water consumption, energy use, and associated environmental impacts of raw materials and processes through different stages of the marble life-cycle during 2017–2018. The cradle-to-gate (extraction to factory gate or store house) life cycle assessment approach was followed in this study. The functional unit for the current study was one tonne of finished marble tile produced. Primary data from the field surveys and secondary data were modeled using the water scarcity index (WSI), CML 2000 v.2.05 methodology, and the cumulative energy demand indicator present by default in SimaPro v.8.3 software. The total water footprint required for one tonne of finished marble tile was 3.62 cubic meters per tonne (m3/t), with electricity consumed at processing units contributing to environmental burdens the most. Similarly, electricity consumed (at processing units and during polishing) and transportation of finished marble tile to the local market were responsible for global warming potential (388 kg CO2 eq/tonne tile), human toxicity (84.34 kg 1,4-DB-eq/tonne), freshwater aquatic ecotoxicity (94.97kg 1,4-DB eq/tonne) and abiotic depletion (7.1 105 kg Sb eq/tonne). The results of our study follow other marble tile LCA studies conducted globally (such as in Turkey and Italy), which also reported a high contribution to GWP, AP, EP, and HT due to electricity and fossil fuels consumption. The total cumulative energy demand (CED) was calculated as 5863.40 MJ (Mega Joule), with most energy usage associated with non-renewable fossil fuel sources. The results indicated that reducing electricity (using standard automatic machinery) and waste materials, especially paper and plastic wastes, can reduce environmental impacts. Most of the surveyed industrial units did not have wastewater treatment and recycling plants, and wastewater directly flows to nearby freshwater bodies and terrestrial ecosystems. These wastewaters should be adequately treated before being discharged into freshwater aquatic bodies. Environmental impacts must be improved by using the latest automatic machinery, reducing waste materials generation, reducing the distance between processing units and the market, and installing wastewater recycling plants.

Original languageEnglish
Article number8325
Pages (from-to)1-20
Number of pages20
JournalSustainability (Switzerland)
Volume14
Issue number14
DOIs
Publication statusPublished - 1 Jul 2022

Fingerprint

Dive into the research topics of 'Environmental, Energy, and Water Footprints of Marble Tile Production Chain in a Life Cycle Perspective'. Together they form a unique fingerprint.

Cite this