TY - JOUR
T1 - Fruit supplementation reduces indices of exercise-induced muscle damage
T2 - a systematic review and meta-analysis
AU - Doma, Kenji
AU - Gahreman, Daniel
AU - Connor, Jonathan
PY - 2021/4
Y1 - 2021/4
N2 - This systematic review and meta-analysis examined the effects of fruit supplements on indices of muscle damage and physical performance measures following muscle-damaging exercise protocols. The PEDro scale and Cochrane’s risk of bias tool was used to critically appraise each study, whilst forest plots were generated to report on standardised mean differences (SMD) and p-values. The studies employed a crossover-randomised design, or a randomised controlled placebo design, with measures compared between the supplement (SUPP) and placebo (PLA) conditions at 24 and 48 h following the muscle-damaging exercise protocols. Compared to the PLA condition, the SUPP condition exhibited significantly lower levels of indirect muscle damage markers (p = 0.02; I2 = 44%), inflammatory markers (p = 0.03; I2 = 45%) and oxidative stress (p < 0.001; I2 = 58%), whilst antioxidant capacity was significantly increased (p = 0.04; I2 = 82%) at 24 h post-exercise. The maximal isometric voluntary contraction was significantly greater for the SUPP condition than the PLA at 24 h (p < 0.001; I2 = 81%) and 48 h (p < 0.001; 84%) post-exercise. Only a few studies reported on functional outcome measures (i.e. countermovement jump, cycling, sprint and running maximal oxygen uptake), and the findings appeared conflicting according to qualitative analyses. Fruit supplementation minimised the level of several biomarkers of muscle damage, inflammation and oxidative stress, whilst improved muscular contractility during periods of EIMD. These findings demonstrate that fruit supplements could be used as recovery strategies from strenuous exercise sessions.
AB - This systematic review and meta-analysis examined the effects of fruit supplements on indices of muscle damage and physical performance measures following muscle-damaging exercise protocols. The PEDro scale and Cochrane’s risk of bias tool was used to critically appraise each study, whilst forest plots were generated to report on standardised mean differences (SMD) and p-values. The studies employed a crossover-randomised design, or a randomised controlled placebo design, with measures compared between the supplement (SUPP) and placebo (PLA) conditions at 24 and 48 h following the muscle-damaging exercise protocols. Compared to the PLA condition, the SUPP condition exhibited significantly lower levels of indirect muscle damage markers (p = 0.02; I2 = 44%), inflammatory markers (p = 0.03; I2 = 45%) and oxidative stress (p < 0.001; I2 = 58%), whilst antioxidant capacity was significantly increased (p = 0.04; I2 = 82%) at 24 h post-exercise. The maximal isometric voluntary contraction was significantly greater for the SUPP condition than the PLA at 24 h (p < 0.001; I2 = 81%) and 48 h (p < 0.001; 84%) post-exercise. Only a few studies reported on functional outcome measures (i.e. countermovement jump, cycling, sprint and running maximal oxygen uptake), and the findings appeared conflicting according to qualitative analyses. Fruit supplementation minimised the level of several biomarkers of muscle damage, inflammation and oxidative stress, whilst improved muscular contractility during periods of EIMD. These findings demonstrate that fruit supplements could be used as recovery strategies from strenuous exercise sessions.
KW - Biochemistry
KW - immunology
KW - nutrition
KW - recovery
UR - http://www.scopus.com/inward/record.url?scp=85088021290&partnerID=8YFLogxK
U2 - 10.1080/17461391.2020.1775895
DO - 10.1080/17461391.2020.1775895
M3 - Review article
C2 - 32460679
AN - SCOPUS:85088021290
VL - 21
SP - 562
EP - 579
JO - European Journal of Sport Science
JF - European Journal of Sport Science
SN - 1536-7290
IS - 4
ER -