Impact of feral water buffalo and fire on growth and survival of mature savanna trees: An experimental field study in Kakadu National Park, northern Australia

Pat Werner

    Research output: Contribution to journalArticleResearchpeer-review

    Abstract

    The impact of feral Asian water buffalo (Bubalus bubalis) and season of fire on growth and survival of mature trees was monitored over 8 years in the eucalypt savannas of Kakadu National Park. Permanently marked plots were paired on either side of a 25-km-long buffalo-proof fence at three locations on an elevational gradient, from ridge-top to the edge of a floodplain; buffalo were removed from one side of the fence. All 750 trees ? 1.4 m height were permanently marked; survival and diameter of each tree was measured annually; 26 species were grouped into four eco-taxonomic groups. The buffalo experiment was maintained for 7 years; trees were monitored an additional year. Fires were excluded from all sites the first 3 years, allowed to occur opportunistically for 4 years and excluded for the final year. Fires were of two main types: low-intensity early dry season and high-intensity late dry season. Growth rates of trees were size-specific and positively related to diameters as exponential functions; trees grew slowest on the two ends of the gradient. Eucalypt mortality rates were 1.5 and 3 times lower than those of pantropics and of arborescent monocots, respectively, but the relative advantage was lost with fires or buffalo grazing. Without buffalo grazing, ground level biomass was 5-8 t ha -1 compared with 2-3 t ha -1, within 3 years. In buffalo-absent plots, trees grew significantly slower on the dry ridge and slope, and had higher mortality across the entire gradient, compared with trees in buffalo-present plots. At the floodplain margin, mortality of small palms was higher in buffalo-present sites, most likely due to associated heavy infestations of weeds. Low-intensity fires produced tree growth and mortality values similar to no-fire, in general, but, like buffalo, provided a 'fertilization' effect for Eucalyptus miniata and Eucalyptus tetrodonta, increasing growth in all size classes. High-intensity fires reduced growth and increased mortality of all functional groups, especially the smallest and largest (>35 cm d.b.h.) trees. When buffalo and fires were excluded in the final year, there were no differences in growth or mortality between paired sites across the environmental gradient. After 8 years, the total numbers of trees in buffalo-absent plots were only 80% of the number in buffalo-present plots, due to relatively greater recruitment of new trees in buffalo-present plots; fire-sensitive pantropics were particularly disadvantaged. Since the removal of buffalo is disadvantageous, at least over the first years, to savanna tree growth and survival due to a rebound effect of the ground-level vegetation and subsequent changes in fire-vegetation interactions, process-orientated management aimed at reducing fuel loads and competitive pressure may be required in order to return the system to a previous state. The 'footprint' of 30 years of heavy grazing by buffalo has implications for the interpretation of previous studies on fire-vegetation dynamics and for current research on vegetation change in these savannas.
    Original languageEnglish
    Pages (from-to)625-647
    Number of pages23
    JournalAustral Ecology
    Volume30
    Issue number6
    Publication statusPublished - 2005

    Fingerprint

    savanna
    savannas
    buffaloes
    national parks
    national park
    water
    mortality
    grazing
    fire intensity
    field study
    vegetation
    dry season
    floodplain
    fences
    tree growth
    floodplains
    Eucalyptus miniata
    Eucalyptus tetrodonta
    vegetation dynamics
    environmental gradient

    Cite this

    @article{416beacd0f6e4b88aa3c09520cd44743,
    title = "Impact of feral water buffalo and fire on growth and survival of mature savanna trees: An experimental field study in Kakadu National Park, northern Australia",
    abstract = "The impact of feral Asian water buffalo (Bubalus bubalis) and season of fire on growth and survival of mature trees was monitored over 8 years in the eucalypt savannas of Kakadu National Park. Permanently marked plots were paired on either side of a 25-km-long buffalo-proof fence at three locations on an elevational gradient, from ridge-top to the edge of a floodplain; buffalo were removed from one side of the fence. All 750 trees ? 1.4 m height were permanently marked; survival and diameter of each tree was measured annually; 26 species were grouped into four eco-taxonomic groups. The buffalo experiment was maintained for 7 years; trees were monitored an additional year. Fires were excluded from all sites the first 3 years, allowed to occur opportunistically for 4 years and excluded for the final year. Fires were of two main types: low-intensity early dry season and high-intensity late dry season. Growth rates of trees were size-specific and positively related to diameters as exponential functions; trees grew slowest on the two ends of the gradient. Eucalypt mortality rates were 1.5 and 3 times lower than those of pantropics and of arborescent monocots, respectively, but the relative advantage was lost with fires or buffalo grazing. Without buffalo grazing, ground level biomass was 5-8 t ha -1 compared with 2-3 t ha -1, within 3 years. In buffalo-absent plots, trees grew significantly slower on the dry ridge and slope, and had higher mortality across the entire gradient, compared with trees in buffalo-present plots. At the floodplain margin, mortality of small palms was higher in buffalo-present sites, most likely due to associated heavy infestations of weeds. Low-intensity fires produced tree growth and mortality values similar to no-fire, in general, but, like buffalo, provided a 'fertilization' effect for Eucalyptus miniata and Eucalyptus tetrodonta, increasing growth in all size classes. High-intensity fires reduced growth and increased mortality of all functional groups, especially the smallest and largest (>35 cm d.b.h.) trees. When buffalo and fires were excluded in the final year, there were no differences in growth or mortality between paired sites across the environmental gradient. After 8 years, the total numbers of trees in buffalo-absent plots were only 80{\%} of the number in buffalo-present plots, due to relatively greater recruitment of new trees in buffalo-present plots; fire-sensitive pantropics were particularly disadvantaged. Since the removal of buffalo is disadvantageous, at least over the first years, to savanna tree growth and survival due to a rebound effect of the ground-level vegetation and subsequent changes in fire-vegetation interactions, process-orientated management aimed at reducing fuel loads and competitive pressure may be required in order to return the system to a previous state. The 'footprint' of 30 years of heavy grazing by buffalo has implications for the interpretation of previous studies on fire-vegetation dynamics and for current research on vegetation change in these savannas.",
    keywords = "environmental disturbance, environmental gradient, exclusion experiment, fire, mortality, ruminant, survival, Australasia, Australia, Kakadu National Park, Northern Territory, Bubalus bubalis, Eucalyptus, Eucalyptus miniata, Eucalyptus tetrodonta, Liliopsida",
    author = "Pat Werner",
    year = "2005",
    language = "English",
    volume = "30",
    pages = "625--647",
    journal = "Australian Journal of Ecology",
    issn = "1442-9985",
    publisher = "Blackwell Publishing",
    number = "6",

    }

    Impact of feral water buffalo and fire on growth and survival of mature savanna trees : An experimental field study in Kakadu National Park, northern Australia. / Werner, Pat.

    In: Austral Ecology, Vol. 30, No. 6, 2005, p. 625-647.

    Research output: Contribution to journalArticleResearchpeer-review

    TY - JOUR

    T1 - Impact of feral water buffalo and fire on growth and survival of mature savanna trees

    T2 - An experimental field study in Kakadu National Park, northern Australia

    AU - Werner, Pat

    PY - 2005

    Y1 - 2005

    N2 - The impact of feral Asian water buffalo (Bubalus bubalis) and season of fire on growth and survival of mature trees was monitored over 8 years in the eucalypt savannas of Kakadu National Park. Permanently marked plots were paired on either side of a 25-km-long buffalo-proof fence at three locations on an elevational gradient, from ridge-top to the edge of a floodplain; buffalo were removed from one side of the fence. All 750 trees ? 1.4 m height were permanently marked; survival and diameter of each tree was measured annually; 26 species were grouped into four eco-taxonomic groups. The buffalo experiment was maintained for 7 years; trees were monitored an additional year. Fires were excluded from all sites the first 3 years, allowed to occur opportunistically for 4 years and excluded for the final year. Fires were of two main types: low-intensity early dry season and high-intensity late dry season. Growth rates of trees were size-specific and positively related to diameters as exponential functions; trees grew slowest on the two ends of the gradient. Eucalypt mortality rates were 1.5 and 3 times lower than those of pantropics and of arborescent monocots, respectively, but the relative advantage was lost with fires or buffalo grazing. Without buffalo grazing, ground level biomass was 5-8 t ha -1 compared with 2-3 t ha -1, within 3 years. In buffalo-absent plots, trees grew significantly slower on the dry ridge and slope, and had higher mortality across the entire gradient, compared with trees in buffalo-present plots. At the floodplain margin, mortality of small palms was higher in buffalo-present sites, most likely due to associated heavy infestations of weeds. Low-intensity fires produced tree growth and mortality values similar to no-fire, in general, but, like buffalo, provided a 'fertilization' effect for Eucalyptus miniata and Eucalyptus tetrodonta, increasing growth in all size classes. High-intensity fires reduced growth and increased mortality of all functional groups, especially the smallest and largest (>35 cm d.b.h.) trees. When buffalo and fires were excluded in the final year, there were no differences in growth or mortality between paired sites across the environmental gradient. After 8 years, the total numbers of trees in buffalo-absent plots were only 80% of the number in buffalo-present plots, due to relatively greater recruitment of new trees in buffalo-present plots; fire-sensitive pantropics were particularly disadvantaged. Since the removal of buffalo is disadvantageous, at least over the first years, to savanna tree growth and survival due to a rebound effect of the ground-level vegetation and subsequent changes in fire-vegetation interactions, process-orientated management aimed at reducing fuel loads and competitive pressure may be required in order to return the system to a previous state. The 'footprint' of 30 years of heavy grazing by buffalo has implications for the interpretation of previous studies on fire-vegetation dynamics and for current research on vegetation change in these savannas.

    AB - The impact of feral Asian water buffalo (Bubalus bubalis) and season of fire on growth and survival of mature trees was monitored over 8 years in the eucalypt savannas of Kakadu National Park. Permanently marked plots were paired on either side of a 25-km-long buffalo-proof fence at three locations on an elevational gradient, from ridge-top to the edge of a floodplain; buffalo were removed from one side of the fence. All 750 trees ? 1.4 m height were permanently marked; survival and diameter of each tree was measured annually; 26 species were grouped into four eco-taxonomic groups. The buffalo experiment was maintained for 7 years; trees were monitored an additional year. Fires were excluded from all sites the first 3 years, allowed to occur opportunistically for 4 years and excluded for the final year. Fires were of two main types: low-intensity early dry season and high-intensity late dry season. Growth rates of trees were size-specific and positively related to diameters as exponential functions; trees grew slowest on the two ends of the gradient. Eucalypt mortality rates were 1.5 and 3 times lower than those of pantropics and of arborescent monocots, respectively, but the relative advantage was lost with fires or buffalo grazing. Without buffalo grazing, ground level biomass was 5-8 t ha -1 compared with 2-3 t ha -1, within 3 years. In buffalo-absent plots, trees grew significantly slower on the dry ridge and slope, and had higher mortality across the entire gradient, compared with trees in buffalo-present plots. At the floodplain margin, mortality of small palms was higher in buffalo-present sites, most likely due to associated heavy infestations of weeds. Low-intensity fires produced tree growth and mortality values similar to no-fire, in general, but, like buffalo, provided a 'fertilization' effect for Eucalyptus miniata and Eucalyptus tetrodonta, increasing growth in all size classes. High-intensity fires reduced growth and increased mortality of all functional groups, especially the smallest and largest (>35 cm d.b.h.) trees. When buffalo and fires were excluded in the final year, there were no differences in growth or mortality between paired sites across the environmental gradient. After 8 years, the total numbers of trees in buffalo-absent plots were only 80% of the number in buffalo-present plots, due to relatively greater recruitment of new trees in buffalo-present plots; fire-sensitive pantropics were particularly disadvantaged. Since the removal of buffalo is disadvantageous, at least over the first years, to savanna tree growth and survival due to a rebound effect of the ground-level vegetation and subsequent changes in fire-vegetation interactions, process-orientated management aimed at reducing fuel loads and competitive pressure may be required in order to return the system to a previous state. The 'footprint' of 30 years of heavy grazing by buffalo has implications for the interpretation of previous studies on fire-vegetation dynamics and for current research on vegetation change in these savannas.

    KW - environmental disturbance

    KW - environmental gradient

    KW - exclusion experiment

    KW - fire

    KW - mortality

    KW - ruminant

    KW - survival

    KW - Australasia

    KW - Australia

    KW - Kakadu National Park

    KW - Northern Territory

    KW - Bubalus bubalis

    KW - Eucalyptus

    KW - Eucalyptus miniata

    KW - Eucalyptus tetrodonta

    KW - Liliopsida

    M3 - Article

    VL - 30

    SP - 625

    EP - 647

    JO - Australian Journal of Ecology

    JF - Australian Journal of Ecology

    SN - 1442-9985

    IS - 6

    ER -