Impaired Systemic Tetrahydrobiopterin Bioavailability and Increased Dihydrobiopterin in Adult Falciparum Malaria: Association with Disease Severity, Impaired Microvascular Function and Increased Endothelial Activation

Tsin Yeo, Daniel Lampah, Enny Kenangalem, Emiliana Tjitra, Ric Price, J Brice Weinberg, Keith Hyland, Donald Granger, Nicholas Anstey

    Research output: Contribution to journalArticle

    6 Downloads (Pure)

    Abstract

    Tetrahydrobiopterin (BH4) is a co-factor required for catalytic activity of nitric oxide synthase (NOS) and amino acid-monooxygenases, including phenylalanine hydroxylase. BH4 is unstable: during oxidative stress it is non-enzymatically oxidized to dihydrobiopterin (BH2), which inhibits NOS. Depending on BH4 availability, NOS oscillates between NO synthase and NADPH oxidase: as the BH4/BH2 ratio decreases, NO production falls and is replaced by superoxide. In African children and Asian adults with severe malaria, NO bioavailability decreases and plasma phenylalanine increases, together suggesting possible BH4 deficiency. The primary three biopterin metabolites (BH4, BH2 and B0 [biopterin]) and their association with disease severity have not been assessed in falciparum malaria. We measured pterin metabolites in urine of adults with severe falciparum malaria (SM; n=12), moderately-severe malaria (MSM, n=17), severe sepsis (SS; n=5) and healthy subjects (HC; n=20) as controls. In SM, urinary BH4 was decreased (median 0.16 ¼mol/mmol creatinine) compared to MSM (median 0.27), SS (median 0.54), and HC (median 0.34)]; p<0.001. Conversely, BH2 was increased in SM (median 0.91 ¼mol/mmol creatinine), compared to MSM (median 0.67), SS (median 0.39), and HC (median 0.52); p<0.001, suggesting increased oxidative stress and insufficient recycling of BH2 back to BH4 in severe malaria. Overall, the median BH4/BH2 ratio was lowest in SM [0.18 (IQR: 0.04-0.32)] compared to MSM (0.45, IQR 0.27-61), SS (1.03; IQR 0.54-2.38) and controls (0.66; IQR 0.43-1.07); p<0.001. In malaria, a lower BH4/BH2 ratio correlated with decreased microvascular reactivity (r=0.41; p=0.03) and increased ICAM-1 (r=-0.52; p=0.005). Decreased BH4 and increased BH2 in severe malaria (but not in severe sepsis) uncouples NOS, leading to impaired NO bioavailability and potentially increased oxidative stress. Adjunctive therapy to regenerate BH4 may have a role in improving NO bioavailability and microvascular perfusion in severe falciparum malaria.
    Original languageEnglish
    Article number e1004667
    Pages (from-to)1-13
    Number of pages13
    JournalPLoS Pathogens
    Volume11
    Issue number3
    DOIs
    Publication statusPublished - 2015

    Fingerprint Dive into the research topics of 'Impaired Systemic Tetrahydrobiopterin Bioavailability and Increased Dihydrobiopterin in Adult Falciparum Malaria: Association with Disease Severity, Impaired Microvascular Function and Increased Endothelial Activation'. Together they form a unique fingerprint.

  • Cite this