Incidence of community onset MRSA in Australia

Least reported where it is Most prevalent

Jessica K. Cameron, Lisa Hall, Steven Y.C. Tong, David L. Paterson, Kate Halton

Research output: Contribution to journalArticleResearchpeer-review

4 Downloads (Pure)

Abstract

Background: This is the first review of literature and synthesis of data on community onset methicillin resistant Staphylococcus aureus (CO-MRSA) infections in Australia. Incidence of CO-MRSA varies considerably in Australia, depending on geographic and demographic factors. 

Methods: Data for the rates of MRSA infections were collected from articles identified using PubMed, Scopus, the grey literature and data from State and Federal Government Surveillance Systems. We synthesized data and developed a framework for how data was selected, collated, linked, organized and interpreted. Results: The results of our literature search demonstrates considerable gaps in the reporting of CO-MRSA in Australia. Consequently, total incidences were under reported; however the available data suggests the incidence varied between 44 (Tasmania) and 388 (southern Northern Territory) cases per 100,000 person years. Hospitalised cases of CO-MRSA varied between 3.8 (regional Victoria) and 329 (southern Northern Territory). Taking the median percentage of infections by site for all regions available, skin and soft tissue infections (SSTIs) consisted of 56% of hospitalized CO-MRSA, compared with bacteremias, which represented 14%. No region had a complete data set of CO-MRSA infections treated in out-patient settings and so incidences were underestimates. Nevertheless, estimates of the incidence of CO-MRSA treated outside hospitals varied between 11.3 (Melbourne) and 285 (Northern Territory) per 100,000 person-years. These infections were chiefly SSTIs, although urinary tract infections were also noted. 

Incidences of CO-MRSA blood-stream infections and outpatient skin and soft tissue infections have been increasing with time, except in Tasmania. CO-MRSA is observed to affect people living in remote areas and areas of socioeconomic disadvantage disproportionately. 

Conclusions: We generated the first estimates of the incidence of CO-MRSA infections in Australia and identified stark regional differences in the nature and frequency of infections. Critically, we demonstrate that there has been a lack of consistency in reporting CO-MRSA and a general dearth of data. The only government in Australia that requires reporting of CO-MRSA is the Tasmanian, where the infection was least prevalent. Some regions of Australia have very high incidences of CO-MRSA. To improve surveillance and inform effective interventions, we recommend a standardized national reporting system in Australia that reports infections at a range of infection sites, has broad geographic coverage and consistent use of terminology. We have identified limitations in the available data that hinder understanding the prevalence of CO-MRSA.

Original languageEnglish
Article number33
Pages (from-to)1-9
Number of pages9
JournalAntimicrobial Resistance and Infection Control
Volume8
DOIs
Publication statusPublished - 12 Feb 2019

Fingerprint

Methicillin-Resistant Staphylococcus aureus
Incidence
Infection
Northern Territory
Soft Tissue Infections
Tasmania
Skin
Outpatients
Literature
State Government
Federal Government
Geography
Victoria
Bacteremia
PubMed
Terminology
Urinary Tract Infections

Cite this

@article{9a982b3aaa974b7aad276ef02f0bc207,
title = "Incidence of community onset MRSA in Australia: Least reported where it is Most prevalent",
abstract = "Background: This is the first review of literature and synthesis of data on community onset methicillin resistant Staphylococcus aureus (CO-MRSA) infections in Australia. Incidence of CO-MRSA varies considerably in Australia, depending on geographic and demographic factors. Methods: Data for the rates of MRSA infections were collected from articles identified using PubMed, Scopus, the grey literature and data from State and Federal Government Surveillance Systems. We synthesized data and developed a framework for how data was selected, collated, linked, organized and interpreted. Results: The results of our literature search demonstrates considerable gaps in the reporting of CO-MRSA in Australia. Consequently, total incidences were under reported; however the available data suggests the incidence varied between 44 (Tasmania) and 388 (southern Northern Territory) cases per 100,000 person years. Hospitalised cases of CO-MRSA varied between 3.8 (regional Victoria) and 329 (southern Northern Territory). Taking the median percentage of infections by site for all regions available, skin and soft tissue infections (SSTIs) consisted of 56{\%} of hospitalized CO-MRSA, compared with bacteremias, which represented 14{\%}. No region had a complete data set of CO-MRSA infections treated in out-patient settings and so incidences were underestimates. Nevertheless, estimates of the incidence of CO-MRSA treated outside hospitals varied between 11.3 (Melbourne) and 285 (Northern Territory) per 100,000 person-years. These infections were chiefly SSTIs, although urinary tract infections were also noted. Incidences of CO-MRSA blood-stream infections and outpatient skin and soft tissue infections have been increasing with time, except in Tasmania. CO-MRSA is observed to affect people living in remote areas and areas of socioeconomic disadvantage disproportionately. Conclusions: We generated the first estimates of the incidence of CO-MRSA infections in Australia and identified stark regional differences in the nature and frequency of infections. Critically, we demonstrate that there has been a lack of consistency in reporting CO-MRSA and a general dearth of data. The only government in Australia that requires reporting of CO-MRSA is the Tasmanian, where the infection was least prevalent. Some regions of Australia have very high incidences of CO-MRSA. To improve surveillance and inform effective interventions, we recommend a standardized national reporting system in Australia that reports infections at a range of infection sites, has broad geographic coverage and consistent use of terminology. We have identified limitations in the available data that hinder understanding the prevalence of CO-MRSA.",
keywords = "Antimicrobial resistance, Australia, Community, Methicillin resistant Staphylococcus aureus, Staphylococcus aureus",
author = "Cameron, {Jessica K.} and Lisa Hall and Tong, {Steven Y.C.} and Paterson, {David L.} and Kate Halton",
year = "2019",
month = "2",
day = "12",
doi = "10.1186/s13756-019-0485-7",
language = "English",
volume = "8",
pages = "1--9",
journal = "Antimicrobial Resistance and Infection Control",
issn = "2047-2994",
publisher = "BioMed Central",

}

Incidence of community onset MRSA in Australia : Least reported where it is Most prevalent. / Cameron, Jessica K.; Hall, Lisa; Tong, Steven Y.C.; Paterson, David L.; Halton, Kate.

In: Antimicrobial Resistance and Infection Control, Vol. 8, 33, 12.02.2019, p. 1-9.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Incidence of community onset MRSA in Australia

T2 - Least reported where it is Most prevalent

AU - Cameron, Jessica K.

AU - Hall, Lisa

AU - Tong, Steven Y.C.

AU - Paterson, David L.

AU - Halton, Kate

PY - 2019/2/12

Y1 - 2019/2/12

N2 - Background: This is the first review of literature and synthesis of data on community onset methicillin resistant Staphylococcus aureus (CO-MRSA) infections in Australia. Incidence of CO-MRSA varies considerably in Australia, depending on geographic and demographic factors. Methods: Data for the rates of MRSA infections were collected from articles identified using PubMed, Scopus, the grey literature and data from State and Federal Government Surveillance Systems. We synthesized data and developed a framework for how data was selected, collated, linked, organized and interpreted. Results: The results of our literature search demonstrates considerable gaps in the reporting of CO-MRSA in Australia. Consequently, total incidences were under reported; however the available data suggests the incidence varied between 44 (Tasmania) and 388 (southern Northern Territory) cases per 100,000 person years. Hospitalised cases of CO-MRSA varied between 3.8 (regional Victoria) and 329 (southern Northern Territory). Taking the median percentage of infections by site for all regions available, skin and soft tissue infections (SSTIs) consisted of 56% of hospitalized CO-MRSA, compared with bacteremias, which represented 14%. No region had a complete data set of CO-MRSA infections treated in out-patient settings and so incidences were underestimates. Nevertheless, estimates of the incidence of CO-MRSA treated outside hospitals varied between 11.3 (Melbourne) and 285 (Northern Territory) per 100,000 person-years. These infections were chiefly SSTIs, although urinary tract infections were also noted. Incidences of CO-MRSA blood-stream infections and outpatient skin and soft tissue infections have been increasing with time, except in Tasmania. CO-MRSA is observed to affect people living in remote areas and areas of socioeconomic disadvantage disproportionately. Conclusions: We generated the first estimates of the incidence of CO-MRSA infections in Australia and identified stark regional differences in the nature and frequency of infections. Critically, we demonstrate that there has been a lack of consistency in reporting CO-MRSA and a general dearth of data. The only government in Australia that requires reporting of CO-MRSA is the Tasmanian, where the infection was least prevalent. Some regions of Australia have very high incidences of CO-MRSA. To improve surveillance and inform effective interventions, we recommend a standardized national reporting system in Australia that reports infections at a range of infection sites, has broad geographic coverage and consistent use of terminology. We have identified limitations in the available data that hinder understanding the prevalence of CO-MRSA.

AB - Background: This is the first review of literature and synthesis of data on community onset methicillin resistant Staphylococcus aureus (CO-MRSA) infections in Australia. Incidence of CO-MRSA varies considerably in Australia, depending on geographic and demographic factors. Methods: Data for the rates of MRSA infections were collected from articles identified using PubMed, Scopus, the grey literature and data from State and Federal Government Surveillance Systems. We synthesized data and developed a framework for how data was selected, collated, linked, organized and interpreted. Results: The results of our literature search demonstrates considerable gaps in the reporting of CO-MRSA in Australia. Consequently, total incidences were under reported; however the available data suggests the incidence varied between 44 (Tasmania) and 388 (southern Northern Territory) cases per 100,000 person years. Hospitalised cases of CO-MRSA varied between 3.8 (regional Victoria) and 329 (southern Northern Territory). Taking the median percentage of infections by site for all regions available, skin and soft tissue infections (SSTIs) consisted of 56% of hospitalized CO-MRSA, compared with bacteremias, which represented 14%. No region had a complete data set of CO-MRSA infections treated in out-patient settings and so incidences were underestimates. Nevertheless, estimates of the incidence of CO-MRSA treated outside hospitals varied between 11.3 (Melbourne) and 285 (Northern Territory) per 100,000 person-years. These infections were chiefly SSTIs, although urinary tract infections were also noted. Incidences of CO-MRSA blood-stream infections and outpatient skin and soft tissue infections have been increasing with time, except in Tasmania. CO-MRSA is observed to affect people living in remote areas and areas of socioeconomic disadvantage disproportionately. Conclusions: We generated the first estimates of the incidence of CO-MRSA infections in Australia and identified stark regional differences in the nature and frequency of infections. Critically, we demonstrate that there has been a lack of consistency in reporting CO-MRSA and a general dearth of data. The only government in Australia that requires reporting of CO-MRSA is the Tasmanian, where the infection was least prevalent. Some regions of Australia have very high incidences of CO-MRSA. To improve surveillance and inform effective interventions, we recommend a standardized national reporting system in Australia that reports infections at a range of infection sites, has broad geographic coverage and consistent use of terminology. We have identified limitations in the available data that hinder understanding the prevalence of CO-MRSA.

KW - Antimicrobial resistance

KW - Australia

KW - Community

KW - Methicillin resistant Staphylococcus aureus

KW - Staphylococcus aureus

UR - http://www.scopus.com/inward/record.url?scp=85062192845&partnerID=8YFLogxK

U2 - 10.1186/s13756-019-0485-7

DO - 10.1186/s13756-019-0485-7

M3 - Article

VL - 8

SP - 1

EP - 9

JO - Antimicrobial Resistance and Infection Control

JF - Antimicrobial Resistance and Infection Control

SN - 2047-2994

M1 - 33

ER -