TY - JOUR
T1 - Influence of chlorsulfuron on rhizobial growth, nodule formation, and nitrogen fixation with chickpea
AU - Anderson, A.
AU - Baldock, J. A.
AU - Rogers, S. L.
AU - Bellotti, W.
AU - Gill, G.
PY - 2004/12/13
Y1 - 2004/12/13
N2 - Sulfonylurea residues have been found to inhibit the growth of some legume crops and pastures in seasons following application. Negative effects of these herbicides on symbiotic nitrogen fixation by legume crops and pastures have been demonstrated. Reductions in nitrogen fixation may result from a direct effect of the herbicide on rhizobial growth and/or an indirect effect on plant growth. In this study the influence of chlorsulfuron on the growth of chickpea rhizobia [Mesorhizobium ciceri (CCl 192)], the growth of chickpea plants, and the extent of nodulation and nitrogen fixation by the chickpea/rhizobia symbiosis were examined. In vitro studies (in yeast mannitol broth and a defined medium) showed that chlorsulfuron applied at double the recommended field application rate did not influence the growth of chickpea rhizobia. An experiment using 14C-labelled chlorsulfuron was conducted to determine if rhizobial cells exposed to chlorsulfuron could deliver the herbicide to the point of root infection and nodule formation. Approximately 1% of the herbicide present in the rhizobial growth medium remained with the cell/inoculum material after rinsing with 1/4 strength Ringer's solution. This was considered unlikely to affect chickpea growth, nodulation, or nitrogen fixation. A pot experiment was used to define the influence of chlorsulfuron on the growth, nodulation, and nitrogen fixation of chickpeas. The presence of chlorsulfuron in the soil reduced the nodulation and nitrogen fixation of the chickpea plants. Pre-exposing rhizobia to chlorsulfuron before inoculating them into pots with germinating chickpea seeds, reduced the number of nodules formed by 51%. Exposure of chickpeas and chickpea rhizobia to chlorsulfuron can adversely affect the formation and activity of symbiotic nitrogen-fixing nodules, even when only the rhizobial inoculant is exposed briefly to the herbicide.
AB - Sulfonylurea residues have been found to inhibit the growth of some legume crops and pastures in seasons following application. Negative effects of these herbicides on symbiotic nitrogen fixation by legume crops and pastures have been demonstrated. Reductions in nitrogen fixation may result from a direct effect of the herbicide on rhizobial growth and/or an indirect effect on plant growth. In this study the influence of chlorsulfuron on the growth of chickpea rhizobia [Mesorhizobium ciceri (CCl 192)], the growth of chickpea plants, and the extent of nodulation and nitrogen fixation by the chickpea/rhizobia symbiosis were examined. In vitro studies (in yeast mannitol broth and a defined medium) showed that chlorsulfuron applied at double the recommended field application rate did not influence the growth of chickpea rhizobia. An experiment using 14C-labelled chlorsulfuron was conducted to determine if rhizobial cells exposed to chlorsulfuron could deliver the herbicide to the point of root infection and nodule formation. Approximately 1% of the herbicide present in the rhizobial growth medium remained with the cell/inoculum material after rinsing with 1/4 strength Ringer's solution. This was considered unlikely to affect chickpea growth, nodulation, or nitrogen fixation. A pot experiment was used to define the influence of chlorsulfuron on the growth, nodulation, and nitrogen fixation of chickpeas. The presence of chlorsulfuron in the soil reduced the nodulation and nitrogen fixation of the chickpea plants. Pre-exposing rhizobia to chlorsulfuron before inoculating them into pots with germinating chickpea seeds, reduced the number of nodules formed by 51%. Exposure of chickpeas and chickpea rhizobia to chlorsulfuron can adversely affect the formation and activity of symbiotic nitrogen-fixing nodules, even when only the rhizobial inoculant is exposed briefly to the herbicide.
UR - http://www.scopus.com/inward/record.url?scp=9644280978&partnerID=8YFLogxK
U2 - 10.1071/AR03057
DO - 10.1071/AR03057
M3 - Article
AN - SCOPUS:9644280978
SN - 0004-9409
VL - 55
SP - 1059
EP - 1070
JO - Australian Journal of Agricultural Research
JF - Australian Journal of Agricultural Research
IS - 10
ER -