TY - JOUR
T1 - Joint Optimal Quantization and Aggregation of Federated Learning Scheme in VANETs
AU - Li, Yifei
AU - Guo, Yijia
AU - Alazab, Mamoun
AU - Chen, Shengbo
AU - Shen, Cong
AU - Yu, Keping
N1 - Publisher Copyright:
IEEE
PY - 2022/10/1
Y1 - 2022/10/1
N2 - Vehicular ad hoc networks (VANETs) is one of the most promising approaches for the Intelligent Transportation Systems (ITS). With the rapid increase in the amount of traffic data, deep learning based algorithms have been used extensively in VANETs. The recently proposed federated learning is an attractive candidate for collaborative machine learning where instead of transferring a plethora of data to a centralized server, all clients train their respective local models and upload them to the server for model aggregation. Model quantization is an effective approach to address the communication efficiency issue in federated learning, and yet existing studies largely assume homogeneous quantization for all clients. However, in reality, clients are predominantly heterogeneous, where they support different quantization precision levels. In this work, we propose FedDO - Federated Learning with Double Optimization. Minimizing the drift term in the convergence analysis, which is a weighted sum of squared quantization errors (SQE) over all clients, leads to a double optimization at both clients and server sides. In particular, each client adopts a fully distributed, instantaneous (per learning round) and individualized (per client) quantization scheme that minimizes its own squared quantization error, and the server computes the aggregation weights that minimize the weighted sum of squared quantization errors over all clients. We show via numerical experiments that the minimal-SQE quantizer has a better performance than a widely adopted linear quantizer for federated learning. We also demonstrate the performance advantages of FedDO over the vanilla FedAvg with standard equal weights and linear quantization.
AB - Vehicular ad hoc networks (VANETs) is one of the most promising approaches for the Intelligent Transportation Systems (ITS). With the rapid increase in the amount of traffic data, deep learning based algorithms have been used extensively in VANETs. The recently proposed federated learning is an attractive candidate for collaborative machine learning where instead of transferring a plethora of data to a centralized server, all clients train their respective local models and upload them to the server for model aggregation. Model quantization is an effective approach to address the communication efficiency issue in federated learning, and yet existing studies largely assume homogeneous quantization for all clients. However, in reality, clients are predominantly heterogeneous, where they support different quantization precision levels. In this work, we propose FedDO - Federated Learning with Double Optimization. Minimizing the drift term in the convergence analysis, which is a weighted sum of squared quantization errors (SQE) over all clients, leads to a double optimization at both clients and server sides. In particular, each client adopts a fully distributed, instantaneous (per learning round) and individualized (per client) quantization scheme that minimizes its own squared quantization error, and the server computes the aggregation weights that minimize the weighted sum of squared quantization errors over all clients. We show via numerical experiments that the minimal-SQE quantizer has a better performance than a widely adopted linear quantizer for federated learning. We also demonstrate the performance advantages of FedDO over the vanilla FedAvg with standard equal weights and linear quantization.
KW - Artificial intelligence
KW - Collaborative work
KW - Computational modeling
KW - Data models
KW - federated learning
KW - Optimization
KW - Quantization (signal)
KW - quantization.
KW - Servers
KW - Standards
KW - vehicular ad hoc networks
UR - http://www.scopus.com/inward/record.url?scp=85124759256&partnerID=8YFLogxK
U2 - 10.1109/TITS.2022.3145823
DO - 10.1109/TITS.2022.3145823
M3 - Article
AN - SCOPUS:85124759256
SN - 1524-9050
VL - 23
SP - 19852
EP - 19863
JO - IEEE Transactions on Intelligent Transportation Systems
JF - IEEE Transactions on Intelligent Transportation Systems
IS - 10
ER -