TY - JOUR
T1 - LungNet22
T2 - A Fine-Tuned Model for Multiclass Classification and Prediction of Lung Disease Using X-ray Images
AU - Javed Mehedi Shamrat, F. M.
AU - Azam, Sami
AU - Karim, Asif
AU - Islam, Rakibul
AU - Tasnim, Zarrin
AU - Ghosh, Pronab
AU - De Boer, Friso
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/5
Y1 - 2022/5
N2 - In recent years, lung disease has increased manyfold, causing millions of casualties annually. To combat the crisis, an efficient, reliable, and affordable lung disease diagnosis technique has become indispensable. In this study, a multiclass classification of lung disease from frontal chest X-ray imaging using a fine-tuned CNN model is proposed. The classification is conducted on 10 disease classes of the lungs, namely COVID-19, Effusion, Tuberculosis, Pneumonia, Lung Opacity, Mass, Nodule, Pneumothorax, and Pulmonary Fibrosis, along with the Normal class. The dataset is a collective dataset gathered from multiple sources. After pre-processing and balancing the dataset with eight augmentation techniques, a total of 80,000 X-ray images were fed to the model for classification purposes. Initially, eight pre-trained CNN models, AlexNet, GoogLeNet, InceptionV3, MobileNetV2, VGG16, ResNet 50, DenseNet121, and EfficientNetB7, were employed on the dataset. Among these, the VGG16 achieved the highest accuracy at 92.95%. To further improve the classification accuracy, LungNet22 was constructed upon the primary structure of the VGG16 model. An ablation study was used in the work to determine the different hyper-parameters. Using the Adam Optimizer, the proposed model achieved a commendable accuracy of 98.89%. To verify the performance of the model, several performance matrices, including the ROC curve and the AUC values, were computed as well.
AB - In recent years, lung disease has increased manyfold, causing millions of casualties annually. To combat the crisis, an efficient, reliable, and affordable lung disease diagnosis technique has become indispensable. In this study, a multiclass classification of lung disease from frontal chest X-ray imaging using a fine-tuned CNN model is proposed. The classification is conducted on 10 disease classes of the lungs, namely COVID-19, Effusion, Tuberculosis, Pneumonia, Lung Opacity, Mass, Nodule, Pneumothorax, and Pulmonary Fibrosis, along with the Normal class. The dataset is a collective dataset gathered from multiple sources. After pre-processing and balancing the dataset with eight augmentation techniques, a total of 80,000 X-ray images were fed to the model for classification purposes. Initially, eight pre-trained CNN models, AlexNet, GoogLeNet, InceptionV3, MobileNetV2, VGG16, ResNet 50, DenseNet121, and EfficientNetB7, were employed on the dataset. Among these, the VGG16 achieved the highest accuracy at 92.95%. To further improve the classification accuracy, LungNet22 was constructed upon the primary structure of the VGG16 model. An ablation study was used in the work to determine the different hyper-parameters. Using the Adam Optimizer, the proposed model achieved a commendable accuracy of 98.89%. To verify the performance of the model, several performance matrices, including the ROC curve and the AUC values, were computed as well.
KW - LungNet22
KW - X-ray image
KW - VGG16
KW - optimizer
KW - CNN
KW - lung disease
KW - deep learning
UR - http://www.scopus.com/inward/record.url?scp=85129885994&partnerID=8YFLogxK
U2 - 10.3390/jpm12050680
DO - 10.3390/jpm12050680
M3 - Article
C2 - 35629103
SN - 2075-4426
VL - 12
SP - 1
EP - 29
JO - Journal of Personalized Medicine
JF - Journal of Personalized Medicine
IS - 5
M1 - 680
ER -