Mapping and monitoring geological hazards using optical, LiDAR, and synthetic aperture RADAR image data

Karen Joyce, S Samsonov, S Levick, J Engelbrecht, S Belliss

    Research output: Contribution to journalArticle


    Geological hazards and their effects are often geographically widespread. Consequently, their effective mapping and monitoring is best conducted using satellite and airborne imaging platforms to obtain broad scale, synoptic coverage. With a multitude of hazards and effects, potential data types, and processing techniques, it can be challenging to determine the best approach for mapping and monitoring. It is therefore critical to understand the spatial and temporal effects of any particular hazard on the environment before selecting the most appropriate data type/s and processing techniques to apply. This review is designed to assist the decision-making and selection process when embarking on a hazard mapping or monitoring exercise. It focuses on the application of optical, LiDAR, and synthetic aperture RADAR technologies for the assessment of pre-event risk and post-event damage. Geological hazards of global interest summarized here are landslides and erosion; seismic and tectonic hazards; ground subsidence; and flooding and tsunami. � 2014 Springer Science+Business Media Dordrecht.
    Original languageEnglish
    Pages (from-to)137-163
    Number of pages27
    JournalNatural Hazards
    Issue number2
    Publication statusPublished - Sep 2014


    Cite this