Million-year lag times in a post-orogenic sediment conveyor

R. H. Fülöp, A. T. Codilean, K. M. Wilcken, T. J. Cohen, D. Fink, A. M. Smith, B. Yang, V. A. Levchenko, L. Wacker, S. K. Marx, N. Stromsoe, T. Fujioka, T. J. Dunai

Research output: Contribution to journalArticlepeer-review

19 Downloads (Pure)


Understanding how sediment transport and storage will delay, attenuate, and even erase the erosional signal of tectonic and climatic forcings has bearing on our ability to read and interpret the geologic record effectively. Here, we estimate sediment transit times in Australia's largest river system, the Murray-Darling basin, by measuring downstream changes in cosmogenic 26Al/10Be/14C ratios in modern river sediment. Results show that the sediments have experienced multiple episodes of burial and reexposure, with cumulative lag times exceeding 1 Ma in the downstream reaches of the Murray and Darling rivers. Combined with low sediment supply rates and old sediment blanketing the landscape, we posit that sediment recycling in the Murray-Darling is an important and ongoing process that will substantially delay and alter signals of external environmental forcing transmitted from the sediment's hinterland.

Original languageEnglish
Article numbereaaz8845
Pages (from-to)1-7
Number of pages7
JournalScience Advances
Issue number25
Publication statusPublished - 17 Jun 2020


Dive into the research topics of 'Million-year lag times in a post-orogenic sediment conveyor'. Together they form a unique fingerprint.

Cite this