Million-year lag times in a post-orogenic sediment conveyor

R. H. Fülöp, A. T. Codilean, K. M. Wilcken, T. J. Cohen, D. Fink, A. M. Smith, B. Yang, V. A. Levchenko, L. Wacker, S. K. Marx, N. Stromsoe, T. Fujioka, T. J. Dunai

    Research output: Contribution to journalArticlepeer-review

    28 Downloads (Pure)

    Abstract

    Understanding how sediment transport and storage will delay, attenuate, and even erase the erosional signal of tectonic and climatic forcings has bearing on our ability to read and interpret the geologic record effectively. Here, we estimate sediment transit times in Australia's largest river system, the Murray-Darling basin, by measuring downstream changes in cosmogenic 26Al/10Be/14C ratios in modern river sediment. Results show that the sediments have experienced multiple episodes of burial and reexposure, with cumulative lag times exceeding 1 Ma in the downstream reaches of the Murray and Darling rivers. Combined with low sediment supply rates and old sediment blanketing the landscape, we posit that sediment recycling in the Murray-Darling is an important and ongoing process that will substantially delay and alter signals of external environmental forcing transmitted from the sediment's hinterland.

    Original languageEnglish
    Article numbereaaz8845
    Pages (from-to)1-7
    Number of pages7
    JournalScience Advances
    Volume6
    Issue number25
    DOIs
    Publication statusPublished - 17 Jun 2020

    Fingerprint

    Dive into the research topics of 'Million-year lag times in a post-orogenic sediment conveyor'. Together they form a unique fingerprint.

    Cite this