Modulating the regioselectivity of solid-state photodimerization in coordination polymer crystals

Fei Long Hu, Zhen Qin, Meng Fan Wang, Xue Wan Kang, Yong Li Qin, Yong Wang, Shu Li Chen, David James Young, Yan Mi

Research output: Contribution to journalArticle

Abstract

Coordination polymers [Cd(1,4-bpeb)(L1)] (1), [Zn2(1,4-bpeb)2(L2)2(SO42-)2] (2) and [Cd(1,4-bpeb)(L3)] (H2O) (3) (H2L1, 3-[2-(3-hydroxy-phenoxymethyl)-benzyloxy]-benzoic acid; HL2, 1H-Indazole-3-carboxylic acid; H3L3, benzene-1,2,3-tricarboxylic acid; 1,4-bpeb, 1,4-bis[2-(4-pyridyl)vinyl]benzene have been synthesized under solvothermal conditions. Complexes 1-3 underwent photodimerization in the solid-state to give quantitative yields of single isomeric products. The choice of carboxyl ligands L and metal center determined the arrangement of 1,4-bpeb ligands, which in turn directed the regiochemistry of the final photoproducts. The solid-state network structures of cadmium based 1 and 3 had 1,4-bpeb pairs aligned face-to-face with both C[double bond, length as m-dash]C centres in each ligand at an appropriate distance and alignment for photodimerization to give the corresponding para-[2.2]cyclophane (pCP) exclusively. By contrast, compound 2 possessed dinuclear (ZnSO4)2 metallocycles that positioned the 1,4-bpeb "arms" face-to-face, but with C[double bond, length as m-dash]C centres offset at an appropriate distance for only one pair to undergo [2 + 2] cycloaddition to yield a single stereoisomer of the monocyclobutane photo-product bpbpvpcb. This work highlights crystal engineering design principles that can be used to facilitate regio- and stereospecificity in solid-state transformations.

Original languageEnglish
Pages (from-to)10858-10865
Number of pages8
JournalDalton transactions (Cambridge, England : 2003)
Volume49
Issue number31
DOIs
Publication statusPublished - 11 Aug 2020

Fingerprint Dive into the research topics of 'Modulating the regioselectivity of solid-state photodimerization in coordination polymer crystals'. Together they form a unique fingerprint.

  • Cite this