Abstract
An optoelectronic oscillator (OEO) for single-frequency microwave generation, enabled by broken parity time (PT) symmetry based on higher-order modulation using a Mach–Zehnder modulator, is proposed and demonstrated. Instead of using two physically separated mutually coupled loops with balanced gain and loss, the PT symmetry is realized using a single physical loop to implement two equivalent loops with the gain loop formed by the beating between the optical carrier and the ±1st-order sidebands and the loss loop formed by the beating between the ±1st-order sidebands and the ±2nd-order sidebands at a photodetector. The gain and loss coefficients are made identical in magnitude by controlling the incident light power to the modulator and the modulator bias voltage. Once the gain/loss coefficient is greater than the coupling coefficient, the PT symmetry is broken, and a single-frequency oscillation without using an ultra-narrow passband filter is achieved. The approach is evaluated experimentally. For an OEO with a loop length of 10.1 km, a single-frequency microwave signal at 9.997 GHz with a 55-dB sidemode suppression ratio and −142-dBc/Hz phase noise at a 10-kHz offset frequency is generated. No mode hopping is observed during a 5-hour measurement period.
Original language | English |
---|---|
Pages (from-to) | 4383-4386 |
Number of pages | 4 |
Journal | Optics Letters |
Volume | 47 |
Issue number | 17 |
DOIs | |
Publication status | Published - 1 Sep 2022 |