TY - JOUR
T1 - Passivation of interstitial and vacancy mediated trap-states for efficient and stable triple-cation perovskite solar cells
AU - Mahmud, Md Arafat
AU - Elumalai, Naveen Kumar
AU - Upama, Mushfika Baishakhi
AU - Wang, Dian
AU - Gonçales, Vinicius R
AU - Wright, Matthew
AU - Xu, Cheng
AU - Haque, Faiazul
AU - Uddin, Ashraf
PY - 2018/4/15
Y1 - 2018/4/15
N2 - The current work reports the concurrent passivation of interstitial and oxygen vacancy mediated defect states in low temperature processed ZnO electron transport layer (ETL) via Ultraviolet-Ozone (UVO) treatment for fabricating highly efficient (maximum efficiency: 16.70%), triple cation based MA0.57FA0.38Rb0.05PbI3 (MA: methyl ammonium, FA: formamidinium, Rb: rubidium) perovskite solar cell (PSC). Under UV exposure, ozone decomposes to free atomic oxygen and intercalates into the interstitial and oxygen vacancy induced defect sites in the ZnO lattice matrix, which contributes to suppressed trap-assisted recombination phenomena in perovskite device. UVO treatment also reduces the content of functional hydroxyl group on ZnO surface, that increases the inter-particle connectivity and grain size of perovskite film on UVO treated ZnO ETL. Owing to this, the perovskite film atop UVO treated ZnO film exhibits reduced micro-strain and dislocation density values, which contribute to the enhanced photovoltaic performance of PSC with modified ZnO ETL. The modified PSCs exhibit higher recombination resistance (RRec) ∼40% compared to pristine ZnO ETL based control devices. Adding to the merit, the UVO treated ZnO PSC also demonstrates superior device stability, retaining about 88% of its initial PCE in the course of a month-long, systematic degradation study.
AB - The current work reports the concurrent passivation of interstitial and oxygen vacancy mediated defect states in low temperature processed ZnO electron transport layer (ETL) via Ultraviolet-Ozone (UVO) treatment for fabricating highly efficient (maximum efficiency: 16.70%), triple cation based MA0.57FA0.38Rb0.05PbI3 (MA: methyl ammonium, FA: formamidinium, Rb: rubidium) perovskite solar cell (PSC). Under UV exposure, ozone decomposes to free atomic oxygen and intercalates into the interstitial and oxygen vacancy induced defect sites in the ZnO lattice matrix, which contributes to suppressed trap-assisted recombination phenomena in perovskite device. UVO treatment also reduces the content of functional hydroxyl group on ZnO surface, that increases the inter-particle connectivity and grain size of perovskite film on UVO treated ZnO ETL. Owing to this, the perovskite film atop UVO treated ZnO film exhibits reduced micro-strain and dislocation density values, which contribute to the enhanced photovoltaic performance of PSC with modified ZnO ETL. The modified PSCs exhibit higher recombination resistance (RRec) ∼40% compared to pristine ZnO ETL based control devices. Adding to the merit, the UVO treated ZnO PSC also demonstrates superior device stability, retaining about 88% of its initial PCE in the course of a month-long, systematic degradation study.
UR - http://www.scopus.com/inward/record.url?scp=85042373310&partnerID=8YFLogxK
U2 - 10.1016/j.jpowsour.2018.02.030
DO - 10.1016/j.jpowsour.2018.02.030
M3 - Article
VL - 383
SP - 59
EP - 71
JO - Journal of Power Sources
JF - Journal of Power Sources
SN - 0378-7753
ER -