TY - JOUR
T1 - Population pharmacokinetics of ivermectin for the treatment of scabies in Indigenous Australian children
AU - Gwee, Amanda
AU - Duffull, Stephen
AU - Zhu, Xiao
AU - Tong, Steven Y.C.
AU - Cranswick, Noel
AU - McWhinney, Brett
AU - Ungerer, Jacobus
AU - Francis, Joshua
AU - Steer, Andrew C.
N1 - Copyright:
This record is sourced from MEDLINE/PubMed, a database of the U.S. National Library of Medicine
PY - 2020/12/7
Y1 - 2020/12/7
N2 - Ivermectin is a broad-spectrum antiparasitic agent used for the treatment and control of neglected tropical diseases. In Australia, ivermectin is primarily used for scabies and is licensed in children aged ≥5 years weighing >15 kg. However, young children, aged <5 years, are particularly vulnerable to scabies and its secondary complications. Therefore, this study aimed to determine an appropriate ivermectin dose for children aged 2 to 4 years and weighing ≤15 kg. We conducted a prospective, pharmacokinetic study of ivermectin in Indigenous Australian children aged between 5 and 15 years and weighing >15 kg. Doses of 200 μg/kg rounded to the nearest whole or half 3 mg tablet were given to children with scabies and ivermectin concentrations determined at two time points after dosing. A population pharmacokinetic model was developed using non-linear mixed effects modelling. A separate covariate database of children aged 2 to 4 years and weighing <15 kg was used to generate 1000 virtual patients and simulate the dose required to achieve equivalent drug exposure in young children as those aged ≥5 years. Overall, 26 children who had 48 ivermectin concentrations determined were included, 11 (42%) were male, the median age was 10.9 years and median body weight 37.6 kg. The final model was a two-compartment model with first-order absorption and linear elimination. For simulated children aged 2 to 4 years, a dose of 3 mg in children weighing 10-15 kg produced similar drug exposures to those >5 years. The median simulated area under the concentration-time curve was 976 μg∙h/L. Using modelling, we have identified a dosing strategy for ivermectin in children aged 2 to 4 years and weighing less than 15 kg that can be prospectively evaluated for safety and efficacy.
AB - Ivermectin is a broad-spectrum antiparasitic agent used for the treatment and control of neglected tropical diseases. In Australia, ivermectin is primarily used for scabies and is licensed in children aged ≥5 years weighing >15 kg. However, young children, aged <5 years, are particularly vulnerable to scabies and its secondary complications. Therefore, this study aimed to determine an appropriate ivermectin dose for children aged 2 to 4 years and weighing ≤15 kg. We conducted a prospective, pharmacokinetic study of ivermectin in Indigenous Australian children aged between 5 and 15 years and weighing >15 kg. Doses of 200 μg/kg rounded to the nearest whole or half 3 mg tablet were given to children with scabies and ivermectin concentrations determined at two time points after dosing. A population pharmacokinetic model was developed using non-linear mixed effects modelling. A separate covariate database of children aged 2 to 4 years and weighing <15 kg was used to generate 1000 virtual patients and simulate the dose required to achieve equivalent drug exposure in young children as those aged ≥5 years. Overall, 26 children who had 48 ivermectin concentrations determined were included, 11 (42%) were male, the median age was 10.9 years and median body weight 37.6 kg. The final model was a two-compartment model with first-order absorption and linear elimination. For simulated children aged 2 to 4 years, a dose of 3 mg in children weighing 10-15 kg produced similar drug exposures to those >5 years. The median simulated area under the concentration-time curve was 976 μg∙h/L. Using modelling, we have identified a dosing strategy for ivermectin in children aged 2 to 4 years and weighing less than 15 kg that can be prospectively evaluated for safety and efficacy.
UR - http://www.scopus.com/inward/record.url?scp=85098741996&partnerID=8YFLogxK
U2 - 10.1371/journal.pntd.0008886
DO - 10.1371/journal.pntd.0008886
M3 - Article
C2 - 33284799
AN - SCOPUS:85098741996
SN - 1935-2727
VL - 14
SP - 1
EP - 10
JO - PLoS Neglected Tropical Diseases
JF - PLoS Neglected Tropical Diseases
IS - 12
M1 - e0008886
ER -