Prediction of contraceptive discontinuation among reproductive-age women in Ethiopia using Ethiopian Demographic and Health Survey 2016 Dataset: A Machine Learning Approach

Shimels Derso Kebede, Yakub Sebastian, Abraham Yeneneh, Ashenafi Fentahun Chanie, Mequannent Sharew Melaku, Agmasie Damtew Walle

    Research output: Contribution to journalArticlepeer-review

    5 Citations (Scopus)
    81 Downloads (Pure)


    Background: Globally, 38% of contraceptive users discontinue the use of a method within the first twelve months. In Ethiopia, about 35% of contraceptive users also discontinue within twelve months. Discontinuation reduces contraceptive coverage, family planning program effectiveness and contributes to undesired fertility. Hence understanding potential predictors of contraceptive discontinuation is crucial to reducing its undesired outcomes. Predicting the risk of discontinuing contraceptives is also used as an early-warning system to notify family planning programs. Thus, this study could enable to predict and determine the predictors for contraceptive discontinuation in Ethiopia. Methodology: Secondary data analysis was done on the 2016 Ethiopian Demographic and Health Survey. Eight machine learning algorithms were employed on a total sample of 5885 women and evaluated using performance metrics to predict and identify important predictors of discontinuation through python software. Feature importance method was used to select top predictors of contraceptive discontinuation. Finally, association rule mining was applied to discover the relationship between contraceptive discontinuation and its top predictors by using R statistical software. Result: Random forest was the best predictive model with 68% accuracy which identified the top predictors of contraceptive discontinuation. Association rule mining identified women's age, women’s education level, family size, husband’s desire for children, husband’s education level, and women’s fertility preference as predictors most frequently associated with contraceptive discontinuation. Conclusion: Results have shown that machine learning algorithms can accurately predict the discontinuation status of contraceptives, making them potentially valuable as decision-support tools for the relevant stakeholders. Through association rule mining analysis of a large dataset, our findings also revealed previously unknown patterns and relationships between contraceptive discontinuation and numerous predictors.

    Original languageEnglish
    Article number9
    Pages (from-to)1-17
    Number of pages17
    JournalBMC Medical Informatics and Decision Making
    Issue number1
    Publication statusPublished - Dec 2023

    Bibliographical note

    Funding Information:
    We are grateful to the MEASURE DHS program that provides permission with data access authorization to enable us to conduct the study.

    Publisher Copyright:
    © 2023, The Author(s).


    Dive into the research topics of 'Prediction of contraceptive discontinuation among reproductive-age women in Ethiopia using Ethiopian Demographic and Health Survey 2016 Dataset: A Machine Learning Approach'. Together they form a unique fingerprint.

    Cite this