Prediction of Ross River virus incidence in Queensland, Australia: Building and comparing models

Wei Qian, David Harley, Kathryn Glass, Elvina Viennet, Cameron Hurst

    Research output: Contribution to journalArticlepeer-review

    1 Downloads (Pure)

    Abstract

    Transmission of Ross River virus (RRV) is influenced by climatic, environmental, and socio-economic factors. Accurate and robust predictions based on these factors are necessary for disease prevention and control. However, the complicated transmission cycle and the characteristics of RRV notification data present challenges. Studies to compare model performance are lacking. In this study, we used RRV notification data and exposure data from 2001 to 2020 in Queensland, Australia, and compared ten models (including generalised linear models, zero-inflated models, and generalised additive models) to predict RRV incidence in different regions of Queensland. We aimed to compare model performance and to evaluate the effect of statistical over-dispersion and zero-inflation of RRV surveillance data, and non-linearity of predictors on model fit. A variable selection strategy for screening important predictors was developed and was found to be efficient and able to generate consistent and reasonable numbers of predictors across regions and in all training sets. Negative binomial models generally exhibited better model fit than Poisson models, suggesting that over-dispersion in the data is the primary factor driving model fit compared to non-linearity of predictors and excess zeros. All models predicted the peak periods well but were unable to fit and predict the magnitude of peaks, especially when there were high numbers of cases. Adding new variables including historical RRV cases and mosquito abundance may improve model performance. The standard negative binomial generalised linear model is stable, simple, and effective in prediction, and is thus considered the best choice among all models.

    Original languageEnglish
    Article numbere14213
    Pages (from-to)1-22
    Number of pages22
    JournalPEERJ
    Volume10
    DOIs
    Publication statusPublished - Nov 2022

    Fingerprint

    Dive into the research topics of 'Prediction of Ross River virus incidence in Queensland, Australia: Building and comparing models'. Together they form a unique fingerprint.

    Cite this