TY - JOUR
T1 - Probing the Reactivity of Singlet Oxygen with Cyclic Monoterpenes
AU - Zeinali, Nassim
AU - Oluwoye, Ibukun
AU - Altarawneh, Mohammednoor K.
AU - Almatarneh, Mansour H.
AU - Dlugogorski, Bogdan Z.
PY - 2019/8/14
Y1 - 2019/8/14
N2 - Monoterpenes represent a class of hydrocarbons consisting of two isoprene units. Like many other terpenes, monoterpenes emerge mainly from vegetation, indicating their significance in both atmospheric chemistry and pharmaceutical and food industries. The atmospheric recycling of monoterpenes constitutes a major source of secondary organic aerosols. Therefore, this contribution focuses on the mechanism and kinetics of atmospheric oxidation of five dominant monoterpenes (i.e., limonene, α-pinene, β-pinene, sabinene, and camphene) by singlet oxygen. The reactions are initiated via the ene-type addition of singlet oxygen (O2 1δg) to the electron-rich double bond, progressing favorably through the concerted reaction mechanisms. The physical analyses of the frontier molecular orbitals agree well with the thermodynamic properties of the selected reagents, and the computed reaction rate parameters. The reactivity of monoterpenes with O2 1δg follows the order of α-pinene > sabinene > limonene > β-pinene > camphene, i.e., α-pinene and camphene retain the highest and lowest reactivity toward singlet oxygen, with rate expressions of k(T) (M-1 s-1) = 1.13 × 108 exp(-48(kJ)/RT(K)) and 6.93 × 108 exp(-139(kJ)/RT(K)), respectively. The effect of solvent on the primary reaction pathways triggers a slight reduction in energy, ranging between 12 and 34 kJ/mol.
AB - Monoterpenes represent a class of hydrocarbons consisting of two isoprene units. Like many other terpenes, monoterpenes emerge mainly from vegetation, indicating their significance in both atmospheric chemistry and pharmaceutical and food industries. The atmospheric recycling of monoterpenes constitutes a major source of secondary organic aerosols. Therefore, this contribution focuses on the mechanism and kinetics of atmospheric oxidation of five dominant monoterpenes (i.e., limonene, α-pinene, β-pinene, sabinene, and camphene) by singlet oxygen. The reactions are initiated via the ene-type addition of singlet oxygen (O2 1δg) to the electron-rich double bond, progressing favorably through the concerted reaction mechanisms. The physical analyses of the frontier molecular orbitals agree well with the thermodynamic properties of the selected reagents, and the computed reaction rate parameters. The reactivity of monoterpenes with O2 1δg follows the order of α-pinene > sabinene > limonene > β-pinene > camphene, i.e., α-pinene and camphene retain the highest and lowest reactivity toward singlet oxygen, with rate expressions of k(T) (M-1 s-1) = 1.13 × 108 exp(-48(kJ)/RT(K)) and 6.93 × 108 exp(-139(kJ)/RT(K)), respectively. The effect of solvent on the primary reaction pathways triggers a slight reduction in energy, ranging between 12 and 34 kJ/mol.
UR - http://www.scopus.com/inward/record.url?scp=85071656605&partnerID=8YFLogxK
U2 - 10.1021/acsomega.9b01825
DO - 10.1021/acsomega.9b01825
M3 - Article
C2 - 31497722
AN - SCOPUS:85071656605
SN - 2470-1343
VL - 4
SP - 14040
EP - 14048
JO - ACS Omega
JF - ACS Omega
IS - 9
ER -