Quantifying mangrove chlorophyll from high spatial resolution imagery

Muditha Kumari Heenkenda Mudalige, Karen Joyce, Stefan Maier, Sytze de Bruin

    Research output: Contribution to journalArticlepeer-review


    Lower than expected chlorophyll concentration of a plant can directly limit photosynthetic activity, and resultant primary production. Low chlorophyll concentration may also indicate plant physiological stress. Compared to other terrestrial vegetation, mangrove chlorophyll variations are poorly understood. This study quantifies the spatial distribution of mangrove canopy chlorophyll variation using remotely sensed data and field samples over the Rapid Creek mangrove forest in Darwin, Australia. Mangrove leaf samples were collected and analyzed for chlorophyll content in the laboratory. Once the leaf area index (LAI) of sampled trees was estimated using the digital cover photography method, the canopy chlorophyll contents were calculated. Then, the nonlinear random forests regression algorithm was used to describe the relationship between canopy chlorophyll content and remotely sensed data (WorldView-2 satellite image bands and their spectral transformations), and to estimate the spatial distribution of canopy chlorophyll variation. The imagery was evaluated at full 2m spatial resolution, as well as at decreased resampled resolutions of 5m and 10m. The root mean squared errors with validation samples were 0.82, 0.64 and 0.65g/m2 for maps at 2m, 5m and 10m spatial resolution respectively. The correlation coefficient was analyzed for the relationship between measured and predicted chlorophyll values. The highest correlation: 0.71 was observed at 5m spatial resolution (R2=0.5). We therefore concluded that estimating mangrove chlorophyll content from remotely sensed data is possible using red, red-edge, NIR1 and NIR2 bands and their spectral transformations as predictors at 5m spatial resolution.
    Original languageEnglish
    Pages (from-to)234-244
    Number of pages11
    JournalISPRS Journal of Photogrammetry and Remote Sensing
    Publication statusPublished - Oct 2015


    Dive into the research topics of 'Quantifying mangrove chlorophyll from high spatial resolution imagery'. Together they form a unique fingerprint.

    Cite this