Sawdust Amendment in Agricultural and Pasture Soils Can Reduce Iodine Losses

Muhammad Mohiuddin, Zahid Hussain, Asim Abbasi, Jawad Ali, Muhammad Irshad, Muhammad Atiq Ur Rehman Tariq, Anum Intisar, Aiman Hina, Qamar Uz Zaman, Anne Wai Man Ng

Research output: Contribution to journalArticlepeer-review

1 Downloads (Pure)

Abstract

Iodine loss is common in the soil of hilly regions due to higher precipitation rates and steeper slopes. Iodine deficiency in soil reduces iodine’s bioavailability to fruits and vegetables and consequently may contribute to health complications. However, the iodine retention of soils after the addition of selected organic and inorganic amendments has not been studied. Therefore, a study was carried out to investigate iodine loss during surface runoff. For this purpose, a soil amendment (namely, sawdust, charcoal, wood ash, lime or gypsum) was applied separately to pasture and agricultural soils under natural rainfall conditions. The soil was fertigated with iodine in the form of potassium iodide (KI) at the rate of 200 ppm. Surface runoff was related to soil properties. Results showed that iodine content in surface runoff was linearly related with soil pH (R2 = 0.89, p < 0.05) and inversely related with soil organic carbon (R2 = −0.76, p < 0.05). Soils amended with sawdust had significantly reduced iodine content in runoff. A higher amount of iodine was lost via surface runoff from soil after inorganic amendment. Soil amendments were varied for iodine retention in soil in the order of sawdust > charcoal > wood ash > lime > gypsum. The study results indicated that organic amendments, especially sawdust, improved soil properties and increased the iodine retention capacity of soils.

Original languageEnglish
Article number13620
Pages (from-to)1-13
Number of pages13
JournalSustainability (Switzerland)
Volume14
Issue number20
DOIs
Publication statusPublished - Oct 2022

Fingerprint

Dive into the research topics of 'Sawdust Amendment in Agricultural and Pasture Soils Can Reduce Iodine Losses'. Together they form a unique fingerprint.

Cite this