Seed supply limits seedling recruitment of Eucalyptus miniata: interactions between seed predation by ants and fire in the Australian seasonal tropics

Samantha Ann Setterfield, Alan Neil Andersen

    Research output: Contribution to journalArticlepeer-review


    Seed predation can cause substantial seed losses and influence plant population dynamics, but the impact depends on the extent to which populations are limited by seed availability or favorable microsites for recruitment. Harvester ants are the dominant post-dispersal seed predators in Australia’s tropical savannas, and their abundance and foraging efficiency, as well as the availability of seed and microsites, are affected by fire history. We undertook a predator-exclusion experiment to examine the interactive effects of fire history (no fire compared with annual burning over 5 years) and seed predation by ants on seedling establishment of the dominant savanna tree, Eucalyptus miniata, in northern Australia. Despite its large seed size, the rate of removal (~ 20–60%) was similar or higher than typically reported for eucalypts, although it was lower than that recorded for the smaller seeds of the co-occurring E. tetrodonta. Seed predation rates were twice as high in annually burnt compared to unburnt sites, but there was no significant difference in the proportion of seedlings that emerged from the initial seed available. Seedling emergence in both regimes was low, representing < 7% of seed available after harvesting. About one-third of emergent seedlings were still alive during the middle of the following dry season. Our results indicate that seedling recruitment in E. miniata is limited by both seed supply and microsite availability. However, seed predation by ants reduces the likelihood of seedling establishment from low to virtually zero, which suggests that it plays a potentially important role in the population dynamics of savanna eucalypts.

    Original languageEnglish
    Pages (from-to)965-972
    Number of pages8
    Issue number4
    Early online date22 Jan 2018
    Publication statusPublished - 1 Apr 2018

    Cite this