Abstract
Biochar has strong potential to improve nitrogen (N) use efficiency in both agricultural and horticultural systems. Biochar is usually co-applied with full rates of fertiliser. However, the extent to which N cycling can be affected after biochar application to meet plant N requirement remains uncertain. This study aimed to explore N cycling up to 2 years after biochar application. We applied pine woodchip biochar at 0, 10 and 30 t ha−1 (B0, B10, B30, respectively) in a macadamia orchard and evaluated the N isotope composition (δ15N) of soil, microbial biomass and macadamia leaves. Soil total N (TN) and inorganic N pools were also measured up to 2 years after biochar application. Biochar did not alter soil TN but soil NO3−-N increased at months 12 and 24 after biochar application. Soil NO3−-N concentrations were always over ideal levels of 15 μg g−1 in B30 throughout the study. Stepwise regression indicated that foliar δ15N decreases after biochar application were explained by increased NO3−-N concentrations in B30. Foliar TN and photosynthesis were not affected by biochar application. The soil in the high rate biochar plots had excess NO3−-N concentrations (over 30 μg g−1) from month 20 onwards. Therefore, N fertiliser applications could be adjusted to prevent excessive N inputs and increase farm profitability.
Original language | English |
---|---|
Pages (from-to) | 6684-6690 |
Number of pages | 7 |
Journal | Environmental Science and Pollution Research |
Volume | 28 |
Issue number | 6 |
DOIs | |
Publication status | Published - Feb 2021 |
Externally published | Yes |
Bibliographical note
Funding Information:This research was funded by internal grants from Griffith University and University of the Sunshine Coast. Acknowledgements
Publisher Copyright:
© 2020, Springer-Verlag GmbH Germany, part of Springer Nature.