TY - JOUR
T1 - Soil uranium concentration at Ranger Uranium Mine Land Application Areas drives changes in the bacterial community
AU - Mumtaz, Saqib
AU - Streten-Joyce, Claire
AU - Parry, David L.
AU - McGuinness, Keith A.
AU - Lu, Ping
AU - Gibb, Karen S.
PY - 2018/9
Y1 - 2018/9
N2 - Soil microorganisms may respond to metal stress by a shift in the microbial community from metal sensitive to metal resistant microorganisms. We assessed the bacterial community from low (2–20 mg kg−1), medium (200–400 mg kg−1), high (500–900 mg kg−1) and very high (>900 mg kg−1) uranium soils at Ranger Uranium Mine in northern Australia through pyrosequencing. Proteobacteria (28.85%) was the most abundant phylum at these sites, followed by Actinobacteria (9.31%), Acidobacteria (7.33%), Verrucomicrobia (2.11%), Firmicutes (2.02%), Chloroflexi (1.11%), Cyanobacteria (0.93%), Planctomycetes (0.82%), Bacteroidetes (0.46%) and Candidate_division_WS3 (Latescibacteria) (0.21%). However, 46.79% of bacteria were unclassified. Bacteria at low U soils differed from soils with elevated uranium. Bacterial OTUs closely related to Kitasatospora spp., Sphingobacteria spp. and Rhodobium spp. were only present at higher uranium concentrations and the bacterial community also changed with seasonal and temporal changes in soil uranium and physicochemical variables. This study using next generation sequencing in association with environmental variables at a uranium mine has laid a foundation for further studies of soil-microbe-metal interactions which may be useful for developing sustainable management and rehabilitation strategies. Furthermore, bacterial species associated with higher uranium may serve as useful indicators of uranium contamination in the wet-dry tropics.
AB - Soil microorganisms may respond to metal stress by a shift in the microbial community from metal sensitive to metal resistant microorganisms. We assessed the bacterial community from low (2–20 mg kg−1), medium (200–400 mg kg−1), high (500–900 mg kg−1) and very high (>900 mg kg−1) uranium soils at Ranger Uranium Mine in northern Australia through pyrosequencing. Proteobacteria (28.85%) was the most abundant phylum at these sites, followed by Actinobacteria (9.31%), Acidobacteria (7.33%), Verrucomicrobia (2.11%), Firmicutes (2.02%), Chloroflexi (1.11%), Cyanobacteria (0.93%), Planctomycetes (0.82%), Bacteroidetes (0.46%) and Candidate_division_WS3 (Latescibacteria) (0.21%). However, 46.79% of bacteria were unclassified. Bacteria at low U soils differed from soils with elevated uranium. Bacterial OTUs closely related to Kitasatospora spp., Sphingobacteria spp. and Rhodobium spp. were only present at higher uranium concentrations and the bacterial community also changed with seasonal and temporal changes in soil uranium and physicochemical variables. This study using next generation sequencing in association with environmental variables at a uranium mine has laid a foundation for further studies of soil-microbe-metal interactions which may be useful for developing sustainable management and rehabilitation strategies. Furthermore, bacterial species associated with higher uranium may serve as useful indicators of uranium contamination in the wet-dry tropics.
KW - Physicochemical parameters
KW - Ranger Uranium Mine
KW - Seasonal and temporal changes
KW - Soil bacterial community
KW - Uranium concentrations
KW - Wet-dry tropics
UR - http://www.scopus.com/inward/record.url?scp=85045958435&partnerID=8YFLogxK
U2 - 10.1016/j.jenvrad.2018.03.003
DO - 10.1016/j.jenvrad.2018.03.003
M3 - Article
C2 - 29549875
AN - SCOPUS:85045958435
VL - 189
SP - 14
EP - 23
JO - Journal of Environmental Radioactivity
JF - Journal of Environmental Radioactivity
SN - 0265-931X
ER -