Spatial and temporal movement patterns of a multi-species coastal reef shark aggregation

Conrad Speed, Mark Meekan, Iain Field, Clive McMahon, J Stevens,, Frazer McGregor, Charlie Huveneer, Yuval Berger, Corey Bradshaw

    Research output: Contribution to journalArticle

    1 Downloads (Pure)

    Abstract

    The quantification of spatial and temporal movement patterns of coral reef sharks is important to understand their role in reef communities and to aid the design of conservation strategies for this predatory guild. We observed 4 species of reef sharks aggregating in an inshore bay in the north of Western Australia for over 2 yr, using acoustic telemetry and visual censuses to examine how they partitioned this site in space and time. We fitted 58 sharks with acoustic transmitters: Carcharhinus melanopterus (36), C. amblyrhynchos (11), Negaprion acutidens (7) and Triaenodon obesus (4). Aggregations consisted primarily of C. melanopterus, although C. amblyrhynchos and N. acu tidens were often present. We observed aggregations by visual census in summer (maximum of 44 sharks). Detections were highest during warmer months (Sep to Mar) for all species, although some individuals showed year-round residency. C. melanopterus, C. amblyrhynchos and N. acutidens had strong diel patterns of attendance at the aggregation site. Peak daily detections occurred from 13:00 to 14:00 h local time for C. melanopterus and C. amblyrhynchos; juvenile C. melanopterus and N. acutidens peaked at 05:00 and 10:00 h, respectively. There was considerable spatial overlap of core areas of use (50% kernel density estimates) at the northern end of the bay by all species; the southern end was used primarily by C. melanopterus and N. acutidens. Aggregations of C. mela nop terus and C. amblyrhynchos consisted mainly of adult females, some of them pregnant. Courtship behaviour in C. melanopterus and T. obesus suggests that these aggregations are related to reproduction. All species displayed inter-annual site fidelity. The long-term presence of juvenile C. melanopterus and N. acutidens also suggests that this bay provides suitable conditions for younger age classes. � Inter-Research 2011.
    Original languageEnglish
    Pages (from-to)261-275
    Number of pages15
    JournalMarine Ecology - Progress Series
    Volume429
    Issue numberMay
    DOIs
    Publication statusPublished - May 2011

    Fingerprint Dive into the research topics of 'Spatial and temporal movement patterns of a multi-species coastal reef shark aggregation'. Together they form a unique fingerprint.

    Cite this