The influence of cation upon the supramolecular aggregation patterns of dithiocarbamate anions functionalised with hydrogen bonding capacity - The prevalence of charge-assisted O-H⋯S interactions

R. Alan Howie, Geraldo M. De Lima, Daniele C. Menezes, James L. Wardell, Solange M.S.V. Wardell, David J. Young, Edward R.T. Tiekink

Research output: Contribution to journalArticle


A range of supramolecular architectures is found in the title dithiocarbamate salts, each with hydrogen bonding functionality in the form of aτ least one hydroxyl group. A common feature in the crystal packing is the prevalence of charge-assisted O-H⋯S hydrogen bonding. In [NH 4][S2CN(CH2CH2OH)2] (1), a 3-D network is found mediated by cooperative O-H⋯S, N-H⋯O and N-H⋯S hydrogen bonding. Reducing the hydrogen bonding functionality by replacing the ammonium cation in (1) by the 4-aza-1-azoniabicyclo(2.2.2)octanium cation to give [DABCO-H][S2CN(CH2CH2OH) 2] (2), results in a 2-D array. Further reduction of the hydrogen bonding functionality, this time by substituting a CH2CH 2OH with an alkyl group to give [DABCO-H][S2CN(CH 2CH2OH)CH3] (3) and [DABCO-H][S 2CN(CH2CH2OH)CH2CH3] (4) allows for the formation of 1-D supramolecular chains. The introduction of alkali metal cations rather than protic cations removes the possibility of the hydroxyl-O participating in hydrogen bonding interactions as these now coordinate the alkali metal. In the sodium trihydrate, Na[S 2CN(CH2CH2OH)2]·3H 2O (5), O-H⋯O hydrogen bonds are found along with charge-assisted O-H⋯S contacts so that a 3-D network results. Substituting a CH2CH2OH group with a n-propyl group gives Na[S2CN(CH2CH2OH)CH2CH 2CH3]·2H2O (6) and yields a 2-D array. For the anhydrous K[S2CN(CH2CH2OH)2] (7) and Cs[S2CN(CH2CH2OH)2] (8) salts, the crystal packing is dominated by charge-assisted O-H⋯S hydrogen bonding giving 3-D network structures. The systematic analysis of the crystal packing patterns of these salts reveals the importance of charge-assisted O-H⋯S hydrogen bonding in stabilising these crystal structures.

Original languageEnglish
Pages (from-to)1626-1637
Number of pages12
Issue number11
Publication statusPublished - 4 Nov 2008
Externally publishedYes


Cite this