The stability of Co3O4, Fe2O3, Au/Co3O4 and Au/Fe2O3 catalysts in the catalytic combustion of lean methane mixtures in the presence of water

Adi Setiawan, Eric M. Kennedy, Bogdan Z. Dlugogorski, Adesoji A. Adesina, Michael Stockenhuber

Research output: Contribution to journalArticlepeer-review


Nano-sized Co3O4, Fe2O3, Au/Co3O4 and Au/Fe2O3 catalysts were prepared and evaluated for catalytic combustion of lean methane-air mixtures. Characteristics and catalytic activities under dry and wet feed conditions were investigated at gas hourly space velocities up to 100 000 h-1 mimicking the typical flow and conversion requirements of a catalytic system designed to treat a ventilation air methane stream. In order to gain a better understanding of the interaction between H2O and the catalyst surface, temperature-programmed desorption of water over fresh and used samples were studied, and supported by other catalyst characterization techniques such as N2-adsorption desorption, XRD, TEM, SEM and XPS analyses. The activity measurements of the catalysts studied identify Co3O4 as the most active material. Co-precipitating gold particles with cobalt oxide or iron oxide do not enhance the activity of the catalyst, which is most likely due to blocking the active site of support by the gold particle. The presence of strong hydroxyl bonds on the catalyst surface is substantiated by TPD and XPS analyses, and is suggested to be responsible for the rapid deactivation of Fe2O3 and Au/Fe2O3 catalysts.

Original languageEnglish
Pages (from-to)276-283
Number of pages8
JournalCatalysis Today
Issue numberPart 2
Early online date2 Jan 2015
Publication statusPublished - 1 Dec 2015
Externally publishedYes


Dive into the research topics of 'The stability of Co<sub>3</sub>O<sub>4</sub>, Fe<sub>2</sub>O<sub>3</sub>, Au/Co<sub>3</sub>O<sub>4</sub> and Au/Fe<sub>2</sub>O<sub>3</sub> catalysts in the catalytic combustion of lean methane mixtures in the presence of water'. Together they form a unique fingerprint.

Cite this