Abstract
Using density functional theory calculations of periodic slabs, within the generalised gradient approximation, this study provides optimised structures for all plausible terminations of copper(ii) chloride surfaces along the three low-index orientations. The ab initio atomistic thermodynamic approach serves to construct a thermodynamic stability diagram for CuCl 2 configurations as a function of the chemical potential of chlorine (Δµ Cl (T, P)). We observe a shift in thermodynamic stability ordering at around Δµ Cl (T, P) = -1.0 eV between a copper-chlorine terminated (001) surface (i.e., (001)CuCl) and a (001) chlorine-covered surface (i.e., (001)Cl). This conclusion accords with experimental observations that report CuCl-bulk like structures, acting as a prerequisite for the formation of CuCl 2 -bulk like arrangements in the course of copper chlorination. Profound stabilities and optimised structures of (001)CuCl and (001)Cl configurations are discussed within the context of the functionality of CuCl 2 as the chief chlorination and condensation catalyst of aromatic pollutants under conditions relevant to their formation in thermal systems, i.e. 400-1000 K, a total operating pressure of 1.0 atm and P Cl 2 = 10 -6 -10 -4 atm (1.0-100.0 ppm).
Original language | English |
---|---|
Pages (from-to) | 24209-24215 |
Number of pages | 7 |
Journal | Physical Chemistry Chemical Physics |
Volume | 16 |
Issue number | 44 |
Early online date | 24 Sep 2014 |
DOIs | |
Publication status | Published - 21 Oct 2014 |
Externally published | Yes |