TY - JOUR
T1 - When trends intersect
T2 - The challenge of protecting freshwater ecosystems under multiple land use and hydrological intensification scenarios
AU - Davis, Jenny
AU - O'Grady, Anthony
AU - Dale, Allan
AU - Arthington, Angela H.
AU - Gell, Peter A.
AU - Driver, Patrick D.
AU - Bond, Nick
AU - Casanova, M
AU - Finlayson, Max
AU - Watts, Robyn
AU - Capon, Sam
AU - Nagelkerken, Ivan
AU - Tingley, Reid
AU - Fry, Brian
AU - Page, Timothy
AU - Specht, A
PY - 2015/11/15
Y1 - 2015/11/15
N2 - Intensification of the use of natural resources is a world-wide trend driven by the increasing demand for water, food, fibre, minerals and energy. These demands are the result of a rising world population, increasing wealth and greater global focus on economic growth. Land use intensification, together with climate change, is also driving intensification of the global hydrological cycle. Both processes will have major socio-economic and ecological implications for global water availability. In this paper we focus on the implications of land use intensification for the conservation and management of freshwater ecosystems using Australia as an example. We consider this in the light of intensification of the hydrologic cycle due to climate change, and associated hydrological scenarios that include the occurrence of more intense hydrological events (extreme storms, larger floods and longer droughts). We highlight the importance of managing water quality, the value of providing environmental flows within a watershed framework and the critical role that innovative science and adaptive management must play in developing proactive and robust responses to intensification. We also suggest research priorities to support improved systemic governance, including adaptation planning and management to maximise freshwater biodiversity outcomes while supporting the socio-economic objectives driving land use intensification. Further research priorities include: i) determining the relative contributions of surface water and groundwater in supporting freshwater ecosystems; ii) identifying and protecting freshwater biodiversity hotspots and refugia; iii) improving our capacity to model hydro-ecological relationships and predict ecological outcomes from land use intensification and climate change; iv) developing an understanding of long term ecosystem behaviour; and v) exploring systemic approaches to enhancing governance systems, including planning and management systems affecting freshwater outcomes. A major policy challenge will be the integration of land and water management, which increasingly are being considered within different policy frameworks.
AB - Intensification of the use of natural resources is a world-wide trend driven by the increasing demand for water, food, fibre, minerals and energy. These demands are the result of a rising world population, increasing wealth and greater global focus on economic growth. Land use intensification, together with climate change, is also driving intensification of the global hydrological cycle. Both processes will have major socio-economic and ecological implications for global water availability. In this paper we focus on the implications of land use intensification for the conservation and management of freshwater ecosystems using Australia as an example. We consider this in the light of intensification of the hydrologic cycle due to climate change, and associated hydrological scenarios that include the occurrence of more intense hydrological events (extreme storms, larger floods and longer droughts). We highlight the importance of managing water quality, the value of providing environmental flows within a watershed framework and the critical role that innovative science and adaptive management must play in developing proactive and robust responses to intensification. We also suggest research priorities to support improved systemic governance, including adaptation planning and management to maximise freshwater biodiversity outcomes while supporting the socio-economic objectives driving land use intensification. Further research priorities include: i) determining the relative contributions of surface water and groundwater in supporting freshwater ecosystems; ii) identifying and protecting freshwater biodiversity hotspots and refugia; iii) improving our capacity to model hydro-ecological relationships and predict ecological outcomes from land use intensification and climate change; iv) developing an understanding of long term ecosystem behaviour; and v) exploring systemic approaches to enhancing governance systems, including planning and management systems affecting freshwater outcomes. A major policy challenge will be the integration of land and water management, which increasingly are being considered within different policy frameworks.
U2 - 10.1016/j.scitotenv.2015.03.127
DO - 10.1016/j.scitotenv.2015.03.127
M3 - Article
SN - 0048-9697
VL - 534
SP - 65
EP - 78
JO - Science of the Total Environment
JF - Science of the Total Environment
ER -